These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 18366175)

  • 41. Single-crystalline molybdenum trioxide nanoribbons: photocatalytic, photoconductive, and electrochemical properties.
    Cheng L; Shao M; Wang X; Hu H
    Chemistry; 2009; 15(10):2310-6. PubMed ID: 19156810
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4.
    Wang Y; Xia H; Lu L; Lin J
    ACS Nano; 2010 Mar; 4(3):1425-32. PubMed ID: 20146455
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Size-controlled synthesis and electrochemical characterization of spherical CeO2 crystallites.
    Zhou F; Ni X; Zhang Y; Zheng H
    J Colloid Interface Sci; 2007 Mar; 307(1):135-8. PubMed ID: 17126356
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ag4V2O6F2 (SVOF): a high silver density phase and potential new cathode material for implantable cardioverter defibrillators.
    Sauvage F; Bodenez V; Vezin H; Albrecht TA; Tarascon JM; Poeppelmeier KR
    Inorg Chem; 2008 Oct; 47(19):8464-72. PubMed ID: 18821813
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis, structural characterization, and electronic structure of single-crystalline Cu(x)V2O5 nanowires.
    Patridge CJ; Jaye C; Zhang H; Marschilok AC; Fischer DA; Takeuchi ES; Banerjee S
    Inorg Chem; 2009 Apr; 48(7):3145-52. PubMed ID: 19260681
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new anode material made of Zn2Ti3O8 nanowires: synthesis and electrochemical properties.
    Hong Z; Wei M; Deng Q; Ding X; Jiang L; Wei K
    Chem Commun (Camb); 2010 Feb; 46(5):740-2. PubMed ID: 20087505
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Layered Na(0.71)CoO(2): a powerful candidate for viable and high performance Na-batteries.
    D'Arienzo M; Ruffo R; Scotti R; Morazzoni F; Mari CM; Polizzi S
    Phys Chem Chem Phys; 2012 May; 14(17):5945-52. PubMed ID: 22446993
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prelithiated silicon nanowires as an anode for lithium ion batteries.
    Liu N; Hu L; McDowell MT; Jackson A; Cui Y
    ACS Nano; 2011 Aug; 5(8):6487-93. PubMed ID: 21711012
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An efficient templating approach for synthesis of highly uniform CdTe and PbTe nanowires.
    Liang HW; Liu S; Wu QS; Yu SH
    Inorg Chem; 2009 Jun; 48(11):4927-33. PubMed ID: 19374372
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A simple hydrothermal method for the large-scale synthesis of single-crystal potassium tungsten bronze nanowires.
    Gu Z; Ma Y; Zhai T; Gao B; Yang W; Yao J
    Chemistry; 2006 Oct; 12(29):7717-23. PubMed ID: 16819734
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High aspect ratio γ-MnOOH nanowires for high performance rechargeable nonaqueous lithium-oxygen batteries.
    Zhang L; Zhang X; Wang Z; Xu J; Xu D; Wang L
    Chem Commun (Camb); 2012 Aug; 48(61):7598-600. PubMed ID: 22735741
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ag4V2O6F2: an electrochemically active and high silver density phase.
    Sorensen EM; Izumi HK; Vaughey JT; Stern CL; Poeppelmeier KR
    J Am Chem Soc; 2005 May; 127(17):6347-52. PubMed ID: 15853341
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery.
    Rong A; Gao XP; Li GR; Yan TY; Zhu HY; Qu JQ; Song DY
    J Phys Chem B; 2006 Aug; 110(30):14754-60. PubMed ID: 16869583
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Li(x)FeF6 (x = 2, 3, 4) battery materials: structural, electronic and lithium diffusion properties.
    Schroeder M; Eames C; Tompsett DA; Lieser G; Islam MS
    Phys Chem Chem Phys; 2013 Dec; 15(47):20473-9. PubMed ID: 24173531
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A facile route to ultra-long polyaniline nanowires and the fabrication of photoswitch.
    Wang X; Shao M; Shao G; Wu Z; Wang S
    J Colloid Interface Sci; 2009 Apr; 332(1):74-7. PubMed ID: 19136118
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Growth of well-aligned gamma-MnO2 monocrystalline nanowires through a coordination-polymer-precursor route.
    Xiong Y; Xie Y; Li Z; Wu C
    Chemistry; 2003 Apr; 9(7):1645-51. PubMed ID: 12658664
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Controlled synthesis of nanocrystalline Li2MnSiO4 particles for high capacity cathode application in lithium-ion batteries.
    Kempaiah DM; Rangappa D; Honma I
    Chem Commun (Camb); 2012 Mar; 48(21):2698-700. PubMed ID: 22307175
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phase-selective synthesis of nickel phosphide in high-boiling solvent for all-solid-state lithium secondary batteries.
    Aso K; Hayashi A; Tatsumisago M
    Inorg Chem; 2011 Nov; 50(21):10820-4. PubMed ID: 21967096
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The controlled growth of single metallic and conducting polymer nanowires via gate-assisted electrochemical deposition.
    Hu Y; To AC; Yun M
    Nanotechnology; 2009 Jul; 20(28):285605. PubMed ID: 19550021
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.