BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 18366177)

  • 1. Determination of protein-ligand binding modes using complexation-induced changes in (1)h NMR chemical shift.
    Cioffi M; Hunter CA; Packer MJ; Spitaleri A
    J Med Chem; 2008 Apr; 51(8):2512-7. PubMed ID: 18366177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of conformational flexibility on complexation-induced changes in chemical shift in a neocarzinostatin protein-ligand complex.
    Cioffi M; Hunter CA; Packer MJ
    J Med Chem; 2008 Aug; 51(15):4488-95. PubMed ID: 18624396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SOS-NMR: a saturation transfer NMR-based method for determining the structures of protein-ligand complexes.
    Hajduk PJ; Mack JC; Olejniczak ET; Park C; Dandliker PJ; Beutel BA
    J Am Chem Soc; 2004 Mar; 126(8):2390-8. PubMed ID: 14982445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How much NMR data is required to determine a protein-ligand complex structure?
    Schieborr U; Vogtherr M; Elshorst B; Betz M; Grimme S; Pescatore B; Langer T; Saxena K; Schwalbe H
    Chembiochem; 2005 Oct; 6(10):1891-8. PubMed ID: 16013076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of ligand binding and protein dynamics in Bacillus subtilis chorismate mutase by transverse relaxation optimized spectroscopy-nuclear magnetic resonance.
    Eletsky A; Kienhöfer A; Hilvert D; Pervushin K
    Biochemistry; 2005 May; 44(18):6788-99. PubMed ID: 15865424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated protein structure determination from NMR spectra.
    López-Méndez B; Güntert P
    J Am Chem Soc; 2006 Oct; 128(40):13112-22. PubMed ID: 17017791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein.
    Eberini I; Guerini Rocco A; Ientile AR; Baptista AM; Gianazza E; Tomaselli S; Molinari H; Ragona L
    Proteins; 2008 Jun; 71(4):1889-98. PubMed ID: 18175325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure determination of protein-protein complexes using NMR chemical shifts: case of an endonuclease colicin-immunity protein complex.
    Montalvao RW; Cavalli A; Salvatella X; Blundell TL; Vendruscolo M
    J Am Chem Soc; 2008 Nov; 130(47):15990-6. PubMed ID: 18980319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of the binding site structure of the cellular retinol-binding protein (CRBP) by ligand NMR chemical shift perturbations.
    Wang B; Merz KM
    J Am Chem Soc; 2005 Apr; 127(15):5310-1. PubMed ID: 15826155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid protein-ligand costructures using chemical shift perturbations.
    Stark J; Powers R
    J Am Chem Soc; 2008 Jan; 130(2):535-45. PubMed ID: 18088118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic mechanism of cyclophilin as observed in molecular dynamics simulations: pathway prediction and reconciliation of X-ray crystallographic and NMR solution data.
    Trzesniak D; van Gunsteren WF
    Protein Sci; 2006 Nov; 15(11):2544-51. PubMed ID: 17075133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational differences in liganded and unliganded states of Galectin-3.
    Umemoto K; Leffler H; Venot A; Valafar H; Prestegard JH
    Biochemistry; 2003 Apr; 42(13):3688-95. PubMed ID: 12667058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments in structural proteomics for protein structure determination.
    Liu HL; Hsu JP
    Proteomics; 2005 May; 5(8):2056-68. PubMed ID: 15846841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure determination of a new protein from backbone-centered NMR data and NMR-assisted structure prediction.
    Mayer KL; Qu Y; Bansal S; LeBlond PD; Jenney FE; Brereton PS; Adams MW; Xu Y; Prestegard JH
    Proteins; 2006 Nov; 65(2):480-9. PubMed ID: 16927360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure determination of protein-ligand complexes by transferred paramagnetic shifts.
    John M; Pintacuda G; Park AY; Dixon NE; Otting G
    J Am Chem Soc; 2006 Oct; 128(39):12910-6. PubMed ID: 17002387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and ligand binding of the extended Tudor domain of D. melanogaster Tudor-SN.
    Friberg A; Corsini L; Mourão A; Sattler M
    J Mol Biol; 2009 Apr; 387(4):921-34. PubMed ID: 19232356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does a fast nuclear magnetic resonance spectroscopy- and X-ray crystallography hybrid approach provide reliable structural information of ligand-protein complexes? A case study of metalloproteinases.
    Isaksson J; Nyström S; Derbyshire D; Wallberg H; Agback T; Kovacs H; Bertini I; Giachetti A; Luchinat C
    J Med Chem; 2009 Mar; 52(6):1712-22. PubMed ID: 19239231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steering protein-ligand docking with quantitative NMR chemical shift perturbations.
    González-Ruiz D; Gohlke H
    J Chem Inf Model; 2009 Oct; 49(10):2260-71. PubMed ID: 19795907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate solution structures of proteins from X-ray data and a minimal set of NMR data: calmodulin-peptide complexes as examples.
    Bertini I; Kursula P; Luchinat C; Parigi G; Vahokoski J; Wilmanns M; Yuan J
    J Am Chem Soc; 2009 Apr; 131(14):5134-44. PubMed ID: 19317469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel NMR method for determining the interfaces of large protein-protein complexes.
    Takahashi H; Nakanishi T; Kami K; Arata Y; Shimada I
    Nat Struct Biol; 2000 Mar; 7(3):220-3. PubMed ID: 10700281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.