BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 18366188)

  • 1. Probing the active site steric flexibility of HIV-1 reverse transcriptase: different constraints for DNA- versus RNA-templated synthesis.
    Silverman AP; Garforth SJ; Prasad VR; Kool ET
    Biochemistry; 2008 Apr; 47(16):4800-7. PubMed ID: 18366188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional evidence for a small and rigid active site in a high fidelity DNA polymerase: probing T7 DNA polymerase with variably sized base pairs.
    Kim TW; Brieba LG; Ellenberger T; Kool ET
    J Biol Chem; 2006 Jan; 281(4):2289-95. PubMed ID: 16311403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Varying DNA base-pair size in subangstrom increments: evidence for a loose, not large, active site in low-fidelity Dpo4 polymerase.
    Mizukami S; Kim TW; Helquist SA; Kool ET
    Biochemistry; 2006 Mar; 45(9):2772-8. PubMed ID: 16503632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nontemplated nucleotide addition by HIV-1 reverse transcriptase.
    Golinelli MP; Hughes SH
    Biochemistry; 2002 May; 41(18):5894-906. PubMed ID: 11980493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases.
    Einolf HJ; Schnetz-Boutaud N; Guengerich FP
    Biochemistry; 1998 Sep; 37(38):13300-12. PubMed ID: 9748338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics.
    Furge LL; Guengerich FP
    Biochemistry; 1997 May; 36(21):6475-87. PubMed ID: 9174365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of HIV-1 and avian myeloblastosis virus reverse transcriptase fidelity on RNA and DNA templates.
    Yu H; Goodman MF
    J Biol Chem; 1992 May; 267(15):10888-96. PubMed ID: 1375233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse transcriptase incorporation of 1,5-anhydrohexitol nucleotides.
    Vastmans K; Froeyen M; Kerremans L; Pochet S; Herdewijn P
    Nucleic Acids Res; 2001 Aug; 29(15):3154-63. PubMed ID: 11470872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substitutions at Phe61 in the beta3-beta4 hairpin of HIV-1 reverse transcriptase reveal a role for the Fingers subdomain in strand displacement DNA synthesis.
    Fisher TS; Darden T; Prasad VR
    J Mol Biol; 2003 Jan; 325(3):443-59. PubMed ID: 12498795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The base substitution fidelity of HIV-1 reverse transcriptase on DNA and RNA templates probed with 8-oxo-deoxyguanosine triphosphate.
    Bebenek K; Boyer JC; Kunkel TA
    Mutat Res; 1999 Oct; 429(2):149-58. PubMed ID: 10526200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA dependent DNA replication fidelity of HIV-1 reverse transcriptase: evidence of discrimination between DNA and RNA substrates.
    Kerr SG; Anderson KS
    Biochemistry; 1997 Nov; 36(46):14056-63. PubMed ID: 9369477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic differences in RNA-dependent DNA polymerization and fidelity between murine leukemia virus and HIV-1 reverse transcriptases.
    Skasko M; Weiss KK; Reynolds HM; Jamburuthugoda V; Lee K; Kim B
    J Biol Chem; 2005 Apr; 280(13):12190-200. PubMed ID: 15644314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of formation of hypoxanthine containing base pairs by HIV-RT: RNA template effects on the base substitution frequencies.
    Valentine MR; Termini J
    Nucleic Acids Res; 2001 Mar; 29(5):1191-9. PubMed ID: 11222769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. p53 enhances the fidelity of DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase.
    Bakhanashvili M
    Oncogene; 2001 Nov; 20(52):7635-44. PubMed ID: 11753641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Major groove binding track residues of the connection subdomain of human immunodeficiency virus type 1 reverse transcriptase enhance cDNA synthesis at high temperatures.
    Matamoros T; Barrioluengo V; Abia D; Menéndez-Arias L
    Biochemistry; 2013 Dec; 52(51):9318-28. PubMed ID: 24303887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of RNA secondary structure on the kinetics of DNA synthesis catalyzed by HIV-1 reverse transcriptase.
    Suo Z; Johnson KA
    Biochemistry; 1997 Oct; 36(41):12459-67. PubMed ID: 9376350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New human immunodeficiency virus, type 1 reverse transcriptase (HIV-1 RT) mutants with increased fidelity of DNA synthesis. Accuracy, template binding, and processivity.
    Kim B; Ayran JC; Sagar SG; Adman ET; Fuller SM; Tran NH; Horrigan J
    J Biol Chem; 1999 Sep; 274(39):27666-73. PubMed ID: 10488107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of glutamine-151 of human immunodeficiency virus type-1 reverse transcriptase in RNA-directed DNA synthesis.
    Kaushik N; Harris D; Rege N; Modak MJ; Yadav PN; Pandey VN
    Biochemistry; 1997 Nov; 36(47):14430-8. PubMed ID: 9398161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tighter binding of HIV reverse transcriptase to RNA-DNA versus DNA-DNA results mostly from interactions in the polymerase domain and requires just a small stretch of RNA-DNA.
    Bohlayer WP; DeStefano JJ
    Biochemistry; 2006 Jun; 45(24):7628-38. PubMed ID: 16768458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular architecture of the mutagenic active site of human immunodeficiency virus type 1 reverse transcriptase: roles of the beta 8-alpha E loop in fidelity, processivity, and substrate interactions.
    Weiss KK; Isaacs SJ; Tran NH; Adman ET; Kim B
    Biochemistry; 2000 Sep; 39(35):10684-94. PubMed ID: 10978152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.