These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18366214)

  • 1. Energy transfer and amplified spontaneous emission in temperature-controlled random scattering media.
    Lee IY; Suzuki H
    J Phys Chem B; 2008 Apr; 112(15):4561-70. PubMed ID: 18366214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanofiber formation of hydroxylpropylcellulose (HPC).
    Yan L; Lin W; Bangal PR
    Macromol Biosci; 2006 Jul; 6(7):532-9. PubMed ID: 16921540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of Particle Size Distribution in Turbid Solutions by Dynamic Light Scattering Microscopy.
    Hiroi T; Shibayama M
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative fluorescence spectroscopy in turbid media: a practical solution to the problem of scattering and absorption.
    Chen Y; Chen ZP; Yang J; Jin JW; Zhang J; Yu RQ
    Anal Chem; 2013 Feb; 85(4):2015-20. PubMed ID: 23327605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular gold nanoparticles influence light scattering and facilitate amplified spontaneous emission generation.
    Yajan P; Yulianto N; Saba M; Dharmawan AB; Sousa de Almeida M; Taladriz-Blanco P; Wasisto HS; Rothen-Rutishauser B; Petri-Fink A; Septiadi D
    J Colloid Interface Sci; 2022 Sep; 622():914-923. PubMed ID: 35561611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of cholesteric (hydroxypropyl)cellulose/polymer networks and ion-mediated control of their optical properties.
    Chiba R; Nishio Y; Sato Y; Ohtaki M; Miyashita Y
    Biomacromolecules; 2006 Nov; 7(11):3076-82. PubMed ID: 17096534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyvinyl pyrrolidone capped fluorescent anthracene nanoparticles for sensing fluorescein sodium in aqueous solution and analytical application for ophthalmic samples.
    Bhopate DP; Mahajan PG; Garadkar KM; Kolekar GB; Patil SR
    Luminescence; 2015 Nov; 30(7):1055-63. PubMed ID: 25736374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle energy transfer on the cell surface.
    Bene L; Szentesi G; Mátyus L; Gáspár R; Damjanovich S
    J Mol Recognit; 2005; 18(3):236-53. PubMed ID: 15593286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable fluorescence in chromophore-functionalized nanodiamond induced by energy transfer.
    Maitra U; Jain A; George SJ; Rao CN
    Nanoscale; 2011 Aug; 3(8):3192-7. PubMed ID: 21660351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Waveguide and ultralow-threshold amplified spontaneous emission in an aligned ordered solid state based on a highly fluorescent twin-tapered bi-1,3,4-oxadiazole derivative.
    Qu S; Li Y; Wang L; Lu Q; Liu X
    Chem Commun (Camb); 2011 Apr; 47(14):4207-9. PubMed ID: 21359401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of a Rod-like Structure for Hydroxypropyl Cellulose Samples in Aqueous Solution.
    Yoshida M; Iwase H; Horikawa Y; Shikata T
    Biomacromolecules; 2024 Jul; 25(7):4255-4266. PubMed ID: 38814246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facile method to control the phase behavior of hydroxypropyl cellulose.
    Gosecki M; Setälä H; Virtanen T; Ryan AJ
    Carbohydr Polym; 2021 Jan; 251():117015. PubMed ID: 33152849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous CdTe quantum dot antennas.
    Mutlugun E; Samarskaya O; Ozel T; Cicek N; Gaponik N; Eychmüller A; Demir HV
    Opt Express; 2010 May; 18(10):10720-30. PubMed ID: 20588924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silica cross-linked nanoparticles encapsulating fluorescent conjugated dyes for energy transfer-based white light emission and porphyrin sensing.
    Gai F; Zhou T; Zhang L; Li X; Hou W; Yang X; Li Y; Zhao X; Xu D; Liu Y; Huo Q
    Nanoscale; 2012 Sep; 4(19):6041-9. PubMed ID: 22930394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric properties of the free water in hydroxypropyl cellulose.
    Sudo S
    J Phys Chem B; 2011 Jan; 115(1):2-6. PubMed ID: 21158378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.
    Mahajan PG; Bhopate DP; Kolekar GB; Patil SR
    J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gelation Kinetics and Network Structure of Cellulose Nanocrystals in Aqueous Solution.
    Peddireddy KR; Capron I; Nicolai T; Benyahia L
    Biomacromolecules; 2016 Oct; 17(10):3298-3304. PubMed ID: 27584941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation energy transfer and trapping in dye-loaded solid particles.
    Rodríguez HB; San Román E
    Ann N Y Acad Sci; 2008; 1130():247-52. PubMed ID: 18596355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A detailed spectroscopic study on the interaction of Rhodamine 6G with human hemoglobin.
    Mandal P; Bardhan M; Ganguly T
    J Photochem Photobiol B; 2010 May; 99(2):78-86. PubMed ID: 20346694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reorganization of dynamic self-assemblies of cellulose diacetate in solution: dynamical critical-like fluctuations in the lower critical solution temperature system.
    Tsunashima Y; Kawanishi H; Horii F
    Biomacromolecules; 2002; 3(6):1276-85. PubMed ID: 12425666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.