These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 18366654)

  • 1. Prion protein insertional mutations increase aggregation propensity but not fiber stability.
    Kalastavadi T; True HL
    BMC Biochem; 2008 Mar; 9():7. PubMed ID: 18366654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into intragenic and extragenic effectors of prion propagation using chimeric prion proteins.
    True HL; Kalastavadi T; Tank EM
    Prion; 2008; 2(2):45-7. PubMed ID: 19098443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [PSI+] maintenance is dependent on the composition, not primary sequence, of the oligopeptide repeat domain.
    Toombs JA; Liss NM; Cobble KR; Ben-Musa Z; Ross ED
    PLoS One; 2011; 6(7):e21953. PubMed ID: 21760933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the role of PrP repeats in conformational conversion and amyloid assembly of chimeric yeast prions.
    Dong J; Bloom JD; Goncharov V; Chattopadhyay M; Millhauser GL; Lynn DG; Scheibel T; Lindquist S
    J Biol Chem; 2007 Nov; 282(47):34204-12. PubMed ID: 17893150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary sequence independence for prion formation.
    Ross ED; Edskes HK; Terry MJ; Wickner RB
    Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12825-30. PubMed ID: 16123127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of charged residues in the N-domain of Sup35 protein on prion [PSI+] stability and propagation.
    Bondarev SA; Shchepachev VV; Kajava AV; Zhouravleva GA
    J Biol Chem; 2013 Oct; 288(40):28503-13. PubMed ID: 23965990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of aggregation of the Rnq1 prion domain and cross-seeding interactions with Sup35NM.
    Vitrenko YA; Gracheva EO; Richmond JE; Liebman SW
    J Biol Chem; 2007 Jan; 282(3):1779-87. PubMed ID: 17121829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct amino acid compositional requirements for formation and maintenance of the [PSI⁺] prion in yeast.
    MacLea KS; Paul KR; Ben-Musa Z; Waechter A; Shattuck JE; Gruca M; Ross ED
    Mol Cell Biol; 2015 Mar; 35(5):899-911. PubMed ID: 25547291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prion protein repeat expansion results in increased aggregation and reveals phenotypic variability.
    Tank EM; Harris DA; Desai AA; True HL
    Mol Cell Biol; 2007 Aug; 27(15):5445-55. PubMed ID: 17548473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro analysis of SpUre2p, a prion-related protein, exemplifies the relationship between amyloid and prion.
    Immel F; Jiang Y; Wang YQ; Marchal C; Maillet L; Perrett S; Cullin C
    J Biol Chem; 2007 Mar; 282(11):7912-20. PubMed ID: 17234629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions.
    Parham SN; Resende CG; Tuite MF
    EMBO J; 2001 May; 20(9):2111-9. PubMed ID: 11331577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prion protein/protein interactions: fusion with yeast Sup35p-NM modulates cytosolic PrP aggregation in mammalian cells.
    Krammer C; Suhre MH; Kremmer E; Diemer C; Hess S; Schätzl HM; Scheibel T; Vorberg I
    FASEB J; 2008 Mar; 22(3):762-73. PubMed ID: 17928365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion-specific effects on prion nucleation and strain formation.
    Rubin J; Khosravi H; Bruce KL; Lydon ME; Behrens SH; Chernoff YO; Bommarius AS
    J Biol Chem; 2013 Oct; 288(42):30300-30308. PubMed ID: 23990463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prion stability.
    Cox BS; Byrne LJ; Tuite MF
    Prion; 2007; 1(3):170-8. PubMed ID: 19164897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the N-terminal oligopeptide repeats of the yeast Sup35 prion protein in propagation and transmission of prion variants.
    Shkundina IS; Kushnirov VV; Tuite MF; Ter-Avanesyan MD
    Genetics; 2006 Feb; 172(2):827-35. PubMed ID: 16272413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo.
    Langlois CR; Pei F; Sindi SS; Serio TR
    PLoS Genet; 2016 Nov; 12(11):e1006417. PubMed ID: 27814358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the [RNQ+] prion reveals stability of amyloid fibers as the key determinant of yeast prion variant propagation.
    Kalastavadi T; True HL
    J Biol Chem; 2010 Jul; 285(27):20748-55. PubMed ID: 20442412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic interactions of Sup35p and PrP prion protein domains modulate aggregate nucleation and seeding.
    Krammer C; Kremmer E; Schätzl HM; Vorberg I
    Prion; 2008; 2(3):99-106. PubMed ID: 19195120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle of yeast prions: propagation mediated by amyloid fibrils.
    Inoue Y
    Protein Pept Lett; 2009; 16(3):271-6. PubMed ID: 19275740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of prion transmission barriers by mutational control of amyloid conformations.
    Chien P; DePace AH; Collins SR; Weissman JS
    Nature; 2003 Aug; 424(6951):948-51. PubMed ID: 12931190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.