These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 18366741)

  • 1. Charge environments around phosphorylation sites in proteins.
    Kitchen J; Saunders RE; Warwicker J
    BMC Struct Biol; 2008 Mar; 8():19. PubMed ID: 18366741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain.
    Pineda G; Shen Z; de Albuquerque CP; Reynoso E; Chen J; Tu CC; Tang W; Briggs S; Zhou H; Wang JY
    BMC Res Notes; 2015 Oct; 8():616. PubMed ID: 26515650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting phosphorylation site prediction with sequence feature-based machine learning.
    Maiti S; Hassan A; Mitra P
    Proteins; 2020 Feb; 88(2):284-291. PubMed ID: 31412138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins.
    Diella F; Cameron S; Gemünd C; Linding R; Via A; Kuster B; Sicheritz-Pontén T; Blom N; Gibson TJ
    BMC Bioinformatics; 2004 Jun; 5():79. PubMed ID: 15212693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospho.ELM: a database of phosphorylation sites--update 2011.
    Dinkel H; Chica C; Via A; Gould CM; Jensen LJ; Gibson TJ; Diella F
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D261-7. PubMed ID: 21062810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the O-phosphorylation of serine, threonine and tyrosine in proteins on the amidic ¹⁵N chemical shielding anisotropy tensors.
    Emmer J; Vavrinská A; Sychrovský V; Benda L; Kříž Z; Koča J; Boelens R; Sklenář V; Trantírek L
    J Biomol NMR; 2013 Jan; 55(1):59-70. PubMed ID: 23202985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospho.ELM: a database of phosphorylation sites--update 2008.
    Diella F; Gould CM; Chica C; Via A; Gibson TJ
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D240-4. PubMed ID: 17962309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using support vector machines to identify protein phosphorylation sites in viruses.
    Huang SY; Shi SP; Qiu JD; Liu MC
    J Mol Graph Model; 2015 Mar; 56():84-90. PubMed ID: 25569881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Approaches to Studying Labile Amino Acid Phosphorylation.
    Marmelstein AM; Moreno J; Fiedler D
    Top Curr Chem (Cham); 2017 Apr; 375(2):22. PubMed ID: 28168647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of conformational sampling of Ser16 and Thr17-phosphorylated phospholamban in interactions with SERCA.
    Sayadi M; Feig M
    Biochim Biophys Acta; 2013 Feb; 1828(2):577-85. PubMed ID: 22959711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospho3D: a database of three-dimensional structures of protein phosphorylation sites.
    Zanzoni A; Ausiello G; Via A; Gherardini PF; Helmer-Citterich M
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D229-31. PubMed ID: 17142231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orchestrating serine/threonine phosphorylation and elucidating downstream effects by short linear motifs.
    Kliche J; Ivarsson Y
    Biochem J; 2022 Jan; 479(1):1-22. PubMed ID: 34989786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine and serine phosphorylation regulate the conformation and subsequent threonine phosphorylation of the L1 cytoplasmic domain.
    Chen MM; Leland HA; Lee CY; Silletti S
    Biochem Biophys Res Commun; 2009 Nov; 389(2):257-64. PubMed ID: 19720049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of insulin-stimulated phosphorylation sites on calmodulin.
    Joyal JL; Crimmins DL; Thoma RS; Sacks DB
    Biochemistry; 1996 May; 35(20):6267-75. PubMed ID: 8639568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of serine and threonine phosphorylation sites in beta-elimination/ethanethiol addition-modified proteins by electrospray tandem mass spectrometry and database searching.
    Jaffe H; Veeranna ; Pant HC
    Biochemistry; 1998 Nov; 37(46):16211-24. PubMed ID: 9819213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of dual specificity kinase activity of DYRK1A.
    Walte A; Rüben K; Birner-Gruenberger R; Preisinger C; Bamberg-Lemper S; Hilz N; Bracher F; Becker W
    FEBS J; 2013 Sep; 280(18):4495-511. PubMed ID: 23809146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information.
    Ahmed S; Kabir M; Arif M; Khan ZU; Yu DJ
    Anal Biochem; 2021 Jan; 612():113955. PubMed ID: 32949607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insight into recognition of phosphorylated threonine-4 of RNA polymerase II C-terminal domain by Rtt103p.
    Jasnovidova O; Krejcikova M; Kubicek K; Stefl R
    EMBO Rep; 2017 Jun; 18(6):906-913. PubMed ID: 28468956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis.
    Macek B; Mijakovic I; Olsen JV; Gnad F; Kumar C; Jensen PR; Mann M
    Mol Cell Proteomics; 2007 Apr; 6(4):697-707. PubMed ID: 17218307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the Tau phosphorylation pattern that drives its aggregation.
    Despres C; Byrne C; Qi H; Cantrelle FX; Huvent I; Chambraud B; Baulieu EE; Jacquot Y; Landrieu I; Lippens G; Smet-Nocca C
    Proc Natl Acad Sci U S A; 2017 Aug; 114(34):9080-9085. PubMed ID: 28784767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.