These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 18366741)
41. Phosphorylation and flexibility of cyclic-AMP-dependent protein kinase (PKA) using (31)P NMR spectroscopy. Seifert MH; Breitenlechner CB; Bossemeyer D; Huber R; Holak TA; Engh RA Biochemistry; 2002 May; 41(19):5968-77. PubMed ID: 11993991 [TBL] [Abstract][Full Text] [Related]
42. Activation and inhibition of Snf1 kinase activity by phosphorylation within the activation loop. McCartney RR; Garnar-Wortzel L; Chandrashekarappa DG; Schmidt MC Biochim Biophys Acta; 2016 Nov; 1864(11):1518-28. PubMed ID: 27524664 [TBL] [Abstract][Full Text] [Related]
43. Serine and threonine phosphorylation of the low density lipoprotein receptor-related protein by protein kinase Calpha regulates endocytosis and association with adaptor molecules. Ranganathan S; Liu CX; Migliorini MM; Von Arnim CA; Peltan ID; Mikhailenko I; Hyman BT; Strickland DK J Biol Chem; 2004 Sep; 279(39):40536-44. PubMed ID: 15272003 [TBL] [Abstract][Full Text] [Related]
44. Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators. Kalantari A; Derouiche A; Shi L; Mijakovic I Microbiology (Reading); 2015 Sep; 161(9):1720-1729. PubMed ID: 26220449 [TBL] [Abstract][Full Text] [Related]
45. The structure of phosphorylated GSK-3beta complexed with a peptide, FRATtide, that inhibits beta-catenin phosphorylation. Bax B; Carter PS; Lewis C; Guy AR; Bridges A; Tanner R; Pettman G; Mannix C; Culbert AA; Brown MJ; Smith DG; Reith AD Structure; 2001 Dec; 9(12):1143-52. PubMed ID: 11738041 [TBL] [Abstract][Full Text] [Related]
46. Global phosphoproteomic analysis of Daphnia pulex reveals evolutionary conservation of Ser/Thr/Tyr phosphorylation. Kwon OK; Sim J; Yun KN; Kim JY; Lee S J Proteome Res; 2014 Mar; 13(3):1327-35. PubMed ID: 24467309 [TBL] [Abstract][Full Text] [Related]
47. Identification of major ERK-related phosphorylation sites in Gab1. Lehr S; Kotzka J; Avci H; Sickmann A; Meyer HE; Herkner A; Muller-Wieland D Biochemistry; 2004 Sep; 43(38):12133-40. PubMed ID: 15379552 [TBL] [Abstract][Full Text] [Related]
48. Tyrosine phosphorylation of the well packed ephrinB cytoplasmic beta-hairpin for reverse signaling. Structural consequences and binding properties. Song J J Biol Chem; 2003 Jul; 278(27):24714-20. PubMed ID: 12606549 [TBL] [Abstract][Full Text] [Related]
49. Dynamics of protein phosphorylation on Ser/Thr/Tyr in Bacillus subtilis. Eymann C; Becher D; Bernhardt J; Gronau K; Klutzny A; Hecker M Proteomics; 2007 Oct; 7(19):3509-26. PubMed ID: 17726680 [TBL] [Abstract][Full Text] [Related]
50. Analysis of protein phosphorylation in the regions of consecutive serine/threonine residues by negative ion electrospray collision-induced dissociation. Approach to pinpointing of phosphorylation sites. Edelson-Averbukh M; Pipkorn R; Lehmann WD Anal Chem; 2007 May; 79(9):3476-86. PubMed ID: 17388569 [TBL] [Abstract][Full Text] [Related]
51. Dual phosphorylation of Ric-8A enhances its ability to mediate G protein α subunit folding and to stimulate guanine nucleotide exchange. Papasergi-Scott MM; Stoveken HM; MacConnachie L; Chan PY; Gabay M; Wong D; Freeman RS; Beg AA; Tall GG Sci Signal; 2018 May; 11(532):. PubMed ID: 29844055 [TBL] [Abstract][Full Text] [Related]
52. Threonine phosphorylation of the beta 3 integrin cytoplasmic tail, at a site recognized by PDK1 and Akt/PKB in vitro, regulates Shc binding. Kirk RI; Sanderson MR; Lerea KM J Biol Chem; 2000 Oct; 275(40):30901-6. PubMed ID: 10896934 [TBL] [Abstract][Full Text] [Related]
53. Understanding the Phosphorylation Mechanism by Using Quantum Chemical Calculations and Molecular Dynamics Simulations. Han W; Zhu J; Wang S; Xu D J Phys Chem B; 2017 Apr; 121(15):3565-3573. PubMed ID: 27976577 [TBL] [Abstract][Full Text] [Related]
54. Structural Impact of Tau Phosphorylation at Threonine 231. Schwalbe M; Kadavath H; Biernat J; Ozenne V; Blackledge M; Mandelkow E; Zweckstetter M Structure; 2015 Aug; 23(8):1448-1458. PubMed ID: 26165593 [TBL] [Abstract][Full Text] [Related]
55. Structural basis for the complete loss of GSK3beta catalytic activity due to R96 mutation investigated by molecular dynamics study. Zhang N; Jiang Y; Zou J; Yu Q; Zhao W Proteins; 2009 May; 75(3):671-81. PubMed ID: 19003984 [TBL] [Abstract][Full Text] [Related]
56. High-resolution solution structure of the beryllofluoride-activated NtrC receiver domain. Hastings CA; Lee SY; Cho HS; Yan D; Kustu S; Wemmer DE Biochemistry; 2003 Aug; 42(30):9081-90. PubMed ID: 12885241 [TBL] [Abstract][Full Text] [Related]
57. [Advancesin enrichment and detection methods for Hu Y; Jiang B; Zhang L; Zhang Y Se Pu; 2020 Mar; 38(3):278-286. PubMed ID: 34213207 [TBL] [Abstract][Full Text] [Related]
58. Effect of Ser392 phosphorylation on the structure and dynamics of the polybasic domain of ADP ribosylation factor nucleotide site opener protein: a molecular simulation study. Srinivasaraghavan K; Nacro K; Grüber G; Verma CS Biochemistry; 2013 Oct; 52(41):7339-49. PubMed ID: 24083777 [TBL] [Abstract][Full Text] [Related]
59. Phosphorylation of the duck hepatitis B virus capsid protein associated with conformational changes in the C terminus. Yu M; Summers J J Virol; 1994 May; 68(5):2965-9. PubMed ID: 8151766 [TBL] [Abstract][Full Text] [Related]