These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 18367238)
21. TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Muraki K; Iwata Y; Katanosaka Y; Ito T; Ohya S; Shigekawa M; Imaizumi Y Circ Res; 2003 Oct; 93(9):829-38. PubMed ID: 14512441 [TBL] [Abstract][Full Text] [Related]
22. Dihydropyridine receptors functioning as voltage sensors in cardiac myocytes. Mackiewicz U; Emanuel K; Lewartowski B J Physiol Pharmacol; 2000 Dec; 51(4 Pt 2):777-98. PubMed ID: 11220488 [TBL] [Abstract][Full Text] [Related]
23. Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent. von Lewinski D; Stumme B; Maier LS; Luers C; Bers DM; Pieske B Cardiovasc Res; 2003 Mar; 57(4):1052-61. PubMed ID: 12650883 [TBL] [Abstract][Full Text] [Related]
24. An ionic model of stretch-activated and stretch-modulated currents in rabbit ventricular myocytes. Healy SN; McCulloch AD Europace; 2005 Sep; 7 Suppl 2():128-34. PubMed ID: 16102510 [TBL] [Abstract][Full Text] [Related]
25. Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes. Belmonte S; Morad M Ann N Y Acad Sci; 2008 Mar; 1123():58-63. PubMed ID: 18375577 [TBL] [Abstract][Full Text] [Related]
26. Angiotensin II and myosin light-chain phosphorylation contribute to the stretch-induced slow force response in human atrial myocardium. Kockskämper J; Khafaga M; Grimm M; Elgner A; Walther S; Kockskämper A; von Lewinski D; Post H; Grossmann M; Dörge H; Gottlieb PA; Sachs F; Eschenhagen T; Schöndube FA; Pieske B Cardiovasc Res; 2008 Sep; 79(4):642-51. PubMed ID: 18503051 [TBL] [Abstract][Full Text] [Related]
27. Gene expression of stretch-activated channels and mechanoelectric feedback in the heart. Kelly D; Mackenzie L; Hunter P; Smaill B; Saint DA Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):642-8. PubMed ID: 16789934 [TBL] [Abstract][Full Text] [Related]
28. Use of liquid chromatography-mass spectrometry (LC-MS) to detect substances of nanomolar concentration in the coronary effluent of isolated perfused hearts. Ward ML; Shen X; Greenwood DR Prog Biophys Mol Biol; 2014 Aug; 115(2-3):270-8. PubMed ID: 25065761 [TBL] [Abstract][Full Text] [Related]
29. Dystrophic cardiomyopathy: role of TRPV2 channels in stretch-induced cell damage. Lorin C; Vögeli I; Niggli E Cardiovasc Res; 2015 Apr; 106(1):153-62. PubMed ID: 25616416 [TBL] [Abstract][Full Text] [Related]
30. Skeletal muscle function: role of ionic changes in fatigue, damage and disease. Allen DG Clin Exp Pharmacol Physiol; 2004 Aug; 31(8):485-93. PubMed ID: 15298539 [TBL] [Abstract][Full Text] [Related]
31. Stretch-activated currents in cardiomyocytes isolated from rabbit pulmonary veins. Seol CA; Kim WT; Ha JM; Choe H; Jang YJ; Youm JB; Earm YE; Leem CH Prog Biophys Mol Biol; 2008; 97(2-3):217-31. PubMed ID: 18353429 [TBL] [Abstract][Full Text] [Related]
33. The mechanism underlying the cardiotoxic effect of the toxin from the jellyfish Chironex fleckeri. Mustafa MR; White E; Hongo K; Othman I; Orchard CH Toxicol Appl Pharmacol; 1995 Aug; 133(2):196-206. PubMed ID: 7645014 [TBL] [Abstract][Full Text] [Related]
34. Activation of gadolinium-sensitive ion channels in cardiomyocytes in early adaptive stages of volume overload-induced heart failure. McNicholas-Bevensee CM; DeAndrade KB; Bradley WE; Dell'Italia LJ; Lucchesi PA; Bevensee MO Cardiovasc Res; 2006 Nov; 72(2):262-70. PubMed ID: 16959228 [TBL] [Abstract][Full Text] [Related]
35. The voltage-sensitive release mechanism of excitation contraction coupling in rabbit cardiac muscle is explained by calcium-induced calcium release. Griffiths H; MacLeod KT J Gen Physiol; 2003 May; 121(5):353-73. PubMed ID: 12719483 [TBL] [Abstract][Full Text] [Related]
36. Stretch-activated currents in ventricular myocytes: amplitude and arrhythmogenic effects increase with hypertrophy. Kamkin A; Kiseleva I; Isenberg G Cardiovasc Res; 2000 Dec; 48(3):409-20. PubMed ID: 11090836 [TBL] [Abstract][Full Text] [Related]
37. The slow force response to stretch in atrial and ventricular myocardium from human heart: functional relevance and subcellular mechanisms. Kockskämper J; von Lewinski D; Khafaga M; Elgner A; Grimm M; Eschenhagen T; Gottlieb PA; Sachs F; Pieske B Prog Biophys Mol Biol; 2008; 97(2-3):250-67. PubMed ID: 18466959 [TBL] [Abstract][Full Text] [Related]
38. Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Iribe G; Ward CW; Camelliti P; Bollensdorff C; Mason F; Burton RA; Garny A; Morphew MK; Hoenger A; Lederer WJ; Kohl P Circ Res; 2009 Mar; 104(6):787-95. PubMed ID: 19197074 [TBL] [Abstract][Full Text] [Related]
39. The role of stretch-activated channels in atrial fibrillation and the impact of intracellular acidosis. Ninio DM; Saint DA Prog Biophys Mol Biol; 2008; 97(2-3):401-16. PubMed ID: 18367236 [TBL] [Abstract][Full Text] [Related]
40. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. Suchyna TM; Johnson JH; Hamer K; Leykam JF; Gage DA; Clemo HF; Baumgarten CM; Sachs F J Gen Physiol; 2000 May; 115(5):583-98. PubMed ID: 10779316 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]