These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 18367449)

  • 1. Therapeutic gene silencing delivered by a chemically modified small interfering RNA against mutant SOD1 slows amyotrophic lateral sclerosis progression.
    Wang H; Ghosh A; Baigude H; Yang CS; Qiu L; Xia X; Zhou H; Rana TM; Xu Z
    J Biol Chem; 2008 Jun; 283(23):15845-52. PubMed ID: 18367449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An RNAi strategy for treatment of amyotrophic lateral sclerosis caused by mutant Cu,Zn superoxide dismutase.
    Xia XG; Zhou H; Zhou S; Yu Y; Wu R; Xu Z
    J Neurochem; 2005 Jan; 92(2):362-7. PubMed ID: 15663483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis.
    Ding H; Schwarz DS; Keene A; Affar el B; Fenton L; Xia X; Shi Y; Zamore PD; Xu Z
    Aging Cell; 2003 Aug; 2(4):209-17. PubMed ID: 12934714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allele-specific RNAi selectively silences mutant SOD1 and achieves significant therapeutic benefit in vivo.
    Xia X; Zhou H; Huang Y; Xu Z
    Neurobiol Dis; 2006 Sep; 23(3):578-86. PubMed ID: 16857362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [RNAi and neurological disease].
    Yokota T
    Rinsho Shinkeigaku; 2005 Nov; 45(11):973-5. PubMed ID: 16447777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic small interfering RNA halts amyotrophic lateral sclerosis in a mouse model.
    Saito Y; Yokota T; Mitani T; Ito K; Anzai M; Miyagishi M; Taira K; Mizusawa H
    J Biol Chem; 2005 Dec; 280(52):42826-30. PubMed ID: 16221675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of functional small interfering RNAs targeting amyotrophic lateral sclerosis-associated mutant alleles.
    Geng CM; Ding HL
    Chin Med J (Engl); 2011 Jan; 124(1):106-10. PubMed ID: 21362317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silencing strategies for therapy of SOD1-mediated ALS.
    van Zundert B; Brown RH
    Neurosci Lett; 2017 Jan; 636():32-39. PubMed ID: 27507699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. siRNA-based inhibition specific for mutant SOD1 with single nucleotide alternation in familial ALS, compared with ribozyme and DNA enzyme.
    Yokota T; Miyagishi M; Hino T; Matsumura R; Tasinato A; Urushitani M; Rao RV; Takahashi R; Bredesen DE; Taira K; Mizusawa H
    Biochem Biophys Res Commun; 2004 Jan; 314(1):283-91. PubMed ID: 14715277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic rAAVrh10 Mediated SOD1 Silencing in Adult SOD1(G93A) Mice and Nonhuman Primates.
    Borel F; Gernoux G; Cardozo B; Metterville JP; Toro Cabrera GC; Song L; Su Q; Gao GP; Elmallah MK; Brown RH; Mueller C
    Hum Gene Ther; 2016 Jan; 27(1):19-31. PubMed ID: 26710998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model.
    Ralph GS; Radcliffe PA; Day DM; Carthy JM; Leroux MA; Lee DC; Wong LF; Bilsland LG; Greensmith L; Kingsman SM; Mitrophanous KA; Mazarakis ND; Azzouz M
    Nat Med; 2005 Apr; 11(4):429-33. PubMed ID: 15768029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Gene therapy of ALS with RNA interference].
    Yokota T
    Rinsho Shinkeigaku; 2009 Nov; 49(11):821-3. PubMed ID: 20030220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-mismatched siRNAs enhance selective gene silencing of a mutant ALS-causing allele.
    Geng CM; Ding HL
    Acta Pharmacol Sin; 2008 Feb; 29(2):211-6. PubMed ID: 18215350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo application of an RNAi strategy for the selective suppression of a mutant allele.
    Kubodera T; Yamada H; Anzai M; Ohira S; Yokota S; Hirai Y; Mochizuki H; Shimada T; Mitani T; Mizusawa H; Yokota T
    Hum Gene Ther; 2011 Jan; 22(1):27-34. PubMed ID: 20649474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia causes autophagic stress and derangement of metabolic adaptation in a cell model of amyotrophic lateral sclerosis.
    Cimini S; Rizzardini M; Biella G; Cantoni L
    J Neurochem; 2014 May; 129(3):413-25. PubMed ID: 24359187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic indices of fast and slow disease progression in two mouse models of amyotrophic lateral sclerosis.
    Nardo G; Iennaco R; Fusi N; Heath PR; Marino M; Trolese MC; Ferraiuolo L; Lawrence N; Shaw PJ; Bendotti C
    Brain; 2013 Nov; 136(Pt 11):3305-32. PubMed ID: 24065725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of mutant Cu/Zn superoxide dismutase (SOD1) protein by coexpressed wild SOD1 protein accelerates the disease progression in familial amyotrophic lateral sclerosis mice.
    Fukada K; Nagano S; Satoh M; Tohyama C; Nakanishi T; Shimizu A; Yanagihara T; Sakoda S
    Eur J Neurosci; 2001 Dec; 14(12):2032-6. PubMed ID: 11860498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene transfer demonstrates that muscle is not a primary target for non-cell-autonomous toxicity in familial amyotrophic lateral sclerosis.
    Miller TM; Kim SH; Yamanaka K; Hester M; Umapathi P; Arnson H; Rizo L; Mendell JR; Gage FH; Cleveland DW; Kaspar BK
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19546-51. PubMed ID: 17164329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Gene therapy of ALS with short interfering RNA].
    Yokota T
    Brain Nerve; 2007 Oct; 59(10):1187-94. PubMed ID: 17969360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virus-delivered small RNA silencing sustains strength in amyotrophic lateral sclerosis.
    Miller TM; Kaspar BK; Kops GJ; Yamanaka K; Christian LJ; Gage FH; Cleveland DW
    Ann Neurol; 2005 May; 57(5):773-6. PubMed ID: 15852369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.