These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 18367610)

  • 61. Representation of the body by single neurons in the dorsolateral striatum of the awake, unrestrained rat.
    Carelli RM; West MO
    J Comp Neurol; 1991 Jul; 309(2):231-49. PubMed ID: 1885787
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Task- and subject-related differences in sensorimotor behavior during active touch.
    Carvell GE; Simons DJ
    Somatosens Mot Res; 1995; 12(1):1-9. PubMed ID: 7571939
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex.
    Haiss F; Schwarz C
    J Neurosci; 2005 Feb; 25(6):1579-87. PubMed ID: 15703412
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Projection Patterns of Corticofugal Neurons Associated with Vibrissa Movement.
    Shibata KI; Tanaka T; Hioki H; Furuta T
    eNeuro; 2018; 5(5):. PubMed ID: 30406196
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Activation of nucleus basalis facilitates cortical control of a brain stem motor program.
    Berg RW; Friedman B; Schroeder LF; Kleinfeld D
    J Neurophysiol; 2005 Jul; 94(1):699-711. PubMed ID: 15728764
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Predictive whisker kinematics reveal context-dependent sensorimotor strategies.
    Wallach A; Deutsch D; Oram TB; Ahissar E
    PLoS Biol; 2020 May; 18(5):e3000571. PubMed ID: 32453721
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Variability in velocity profiles during free-air whisking behavior of unrestrained rats.
    Towal RB; Hartmann MJ
    J Neurophysiol; 2008 Aug; 100(2):740-52. PubMed ID: 18436634
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Spectral mixing of rhythmic neuronal signals in sensory cortex.
    Ahrens KF; Levine H; Suhl H; Kleinfeld D
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):15176-81. PubMed ID: 12403828
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Exploratory whisking by rat is not phase locked to the hippocampal theta rhythm.
    Berg RW; Whitmer D; Kleinfeld D
    J Neurosci; 2006 Jun; 26(24):6518-22. PubMed ID: 16775139
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Evidence for a trigeminal mesencephalic-hypoglossal nuclei loop involved in controlling vibrissae movements in the rat.
    Mameli O; Caria MA; Pellitteri R; Russo A; Saccone S; Stanzani S
    Exp Brain Res; 2016 Mar; 234(3):753-61. PubMed ID: 26645304
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modeling forces and moments at the base of a rat vibrissa during noncontact whisking and whisking against an object.
    Quist BW; Seghete V; Huet LA; Murphey TD; Hartmann MJ
    J Neurosci; 2014 Jul; 34(30):9828-44. PubMed ID: 25057187
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A novel videographic method for quantitatively tracking vibrissal motor recovery following facial nerve injuries in rats.
    Huang JT; Wang GD; Wang da L; Liu Y; Zhang XY; Zhao YF
    J Neurosci Methods; 2015 Jul; 249():16-21. PubMed ID: 25850078
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Vibrissal kinematics in 3D: tight coupling of azimuth, elevation, and torsion across different whisking modes.
    Knutsen PM; Biess A; Ahissar E
    Neuron; 2008 Jul; 59(1):35-42. PubMed ID: 18614027
    [TBL] [Abstract][Full Text] [Related]  

  • 74. What makes whiskers shake? Focus on "Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat".
    Brecht M
    J Neurophysiol; 2004 Sep; 92(3):1265-6. PubMed ID: 15331639
    [No Abstract]   [Full Text] [Related]  

  • 75. Cellular mechanisms of motor control in the vibrissal system.
    Brecht M; Grinevich V; Jin TE; Margrie T; Osten P
    Pflugers Arch; 2006 Dec; 453(3):269-81. PubMed ID: 16736208
    [TBL] [Abstract][Full Text] [Related]  

  • 76. New modules are added to vibrissal premotor circuitry with the emergence of exploratory whisking.
    Takatoh J; Nelson A; Zhou X; Bolton MM; Ehlers MD; Arenkiel BR; Mooney R; Wang F
    Neuron; 2013 Jan; 77(2):346-60. PubMed ID: 23352170
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Whisking Asymmetry Signals Motor Preparation and the Behavioral State of Mice.
    Dominiak SE; Nashaat MA; Sehara K; Oraby H; Larkum ME; Sachdev RNS
    J Neurosci; 2019 Dec; 39(49):9818-9830. PubMed ID: 31666357
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cortical control of whisker movement.
    Petersen CC
    Annu Rev Neurosci; 2014; 37():183-203. PubMed ID: 24821429
    [TBL] [Abstract][Full Text] [Related]  

  • 79. What generates whisking? Focus on: "The whisking rhythm generator: a novel mammalian network for the generation of movement".
    Castro-Alamancos MA
    J Neurophysiol; 2007 Mar; 97(3):1883-4. PubMed ID: 17202236
    [No Abstract]   [Full Text] [Related]  

  • 80. Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact.
    Mitchinson B; Martin CJ; Grant RA; Prescott TJ
    Proc Biol Sci; 2007 Apr; 274(1613):1035-41. PubMed ID: 17331893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.