These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 18367699)

  • 1. Reversal of a distractor effect on saccade target selection after superior colliculus inactivation.
    McPeek RM
    J Neurophysiol; 2008 May; 99(5):2694-702. PubMed ID: 18367699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deficits in saccade target selection after inactivation of superior colliculus.
    McPeek RM; Keller EL
    Nat Neurosci; 2004 Jul; 7(7):757-63. PubMed ID: 15195099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition between saccade goals in the superior colliculus produces saccade curvature.
    McPeek RM; Han JH; Keller EL
    J Neurophysiol; 2003 May; 89(5):2577-90. PubMed ID: 12611995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saccade target selection in the superior colliculus during a visual search task.
    McPeek RM; Keller EL
    J Neurophysiol; 2002 Oct; 88(4):2019-34. PubMed ID: 12364525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural discharge in the superior colliculus during target search paradigms.
    Keller EL; McPeek RM
    Ann N Y Acad Sci; 2002 Apr; 956():130-42. PubMed ID: 11960799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible inactivation of monkey superior colliculus. I. Curvature of saccadic trajectory.
    Aizawa H; Wurtz RH
    J Neurophysiol; 1998 Apr; 79(4):2082-96. PubMed ID: 9535970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of primate superior colliculus biases target choice for smooth pursuit, saccades, and button press responses.
    Nummela SU; Krauzlis RJ
    J Neurophysiol; 2010 Sep; 104(3):1538-48. PubMed ID: 20660420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separate visual signals for saccade initiation during target selection in the primate superior colliculus.
    White BJ; Munoz DP
    J Neurosci; 2011 Feb; 31(5):1570-8. PubMed ID: 21289164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive integration of visual and preparatory signals in the superior colliculus during saccadic programming.
    Dorris MC; Olivier E; Munoz DP
    J Neurosci; 2007 May; 27(19):5053-62. PubMed ID: 17494691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that the superior colliculus participates in the feedback control of saccadic eye movements.
    Soetedjo R; Kaneko CR; Fuchs AF
    J Neurophysiol; 2002 Feb; 87(2):679-95. PubMed ID: 11826037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of saccades perturbed by stimulation of the rostral superior colliculus, the caudal superior colliculus, and the omnipause neuron region.
    Gandhi NJ; Keller EL
    J Neurophysiol; 1999 Dec; 82(6):3236-53. PubMed ID: 10601457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible inactivation of macaque frontal eye field.
    Sommer MA; Tehovnik EJ
    Exp Brain Res; 1997 Sep; 116(2):229-49. PubMed ID: 9348123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural correlates of target selection for reaching movements in superior colliculus.
    Song JH; McPeek RM
    J Neurophysiol; 2015 Mar; 113(5):1414-22. PubMed ID: 25505107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superior colliculus activity related to concurrent processing of saccade goals in a visual search task.
    McPeek RM; Keller EL
    J Neurophysiol; 2002 Apr; 87(4):1805-15. PubMed ID: 11929902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.
    Marino RA; Levy R; Munoz DP
    J Neurophysiol; 2015 Aug; 114(2):879-92. PubMed ID: 26063770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccade target selection in the superior colliculus: a signal detection theory approach.
    Kim B; Basso MA
    J Neurosci; 2008 Mar; 28(12):2991-3007. PubMed ID: 18354003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural mechanisms of speed-accuracy tradeoff of visual search: saccade vigor, the origin of targeting errors, and comparison of the superior colliculus and frontal eye field.
    Reppert TR; Servant M; Heitz RP; Schall JD
    J Neurophysiol; 2018 Jul; 120(1):372-384. PubMed ID: 29668383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory tagging both speeds and strengthens saccade target selection in the superior colliculus during visual search.
    Conroy C; Nanjappa R; McPeek RM
    J Neurophysiol; 2024 Mar; 131(3):548-555. PubMed ID: 38292000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of saccadic responses in monkey when multiple competing visual stimuli are present.
    Arai K; McPeek RM; Keller EL
    J Neurophysiol; 2004 Feb; 91(2):890-900. PubMed ID: 14561691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaze shifts evoked by electrical stimulation of the superior colliculus in the head-unrestrained cat. II. Effect of muscimol inactivation of the caudal fastigial nucleus.
    Guillaume A; PĂ©lisson D
    Eur J Neurosci; 2001 Oct; 14(8):1345-59. PubMed ID: 11703463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.