BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 18367728)

  • 21. Analysis of the heat shock response in mouse liver reveals transcriptional dependence on the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha).
    Vallanat B; Anderson SP; Brown-Borg HM; Ren H; Kersten S; Jonnalagadda S; Srinivasan R; Corton JC
    BMC Genomics; 2010 Jan; 11():16. PubMed ID: 20059764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hyperthermia promotes and prevents respiratory epithelial apoptosis through distinct mechanisms.
    Nagarsekar A; Tulapurkar ME; Singh IS; Atamas SP; Shah NG; Hasday JD
    Am J Respir Cell Mol Biol; 2012 Dec; 47(6):824-33. PubMed ID: 22962066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Regulation of heat shock gene expression in response to stress].
    Garbuz DG
    Mol Biol (Mosk); 2017; 51(3):400-417. PubMed ID: 28707656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster.
    Gonsalves SE; Moses AM; Razak Z; Robert F; Westwood JT
    PLoS One; 2011 Jan; 6(1):e15934. PubMed ID: 21264254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fas ligand gene expression is directly regulated by stress-inducible heat shock transcription factor-1.
    Bouchier-Hayes L; McBride S; van Geelen CM; Nance S; Lewis LK; Pinkoski MJ; Beere HM
    Cell Death Differ; 2010 Jun; 17(6):1034-46. PubMed ID: 20150914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential recognition of heat shock elements by members of the heat shock transcription factor family.
    Yamamoto N; Takemori Y; Sakurai M; Sugiyama K; Sakurai H
    FEBS J; 2009 Apr; 276(7):1962-74. PubMed ID: 19250318
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of Heat Shock Factors in Stress-Induced Transcription.
    Murshid A; Prince TL; Lang B; Calderwood SK
    Methods Mol Biol; 2018; 1709():23-34. PubMed ID: 29177648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of heat shock factor activity prevents heat shock potentiation of glucocorticoid receptor-mediated gene expression.
    Li DP; Li Calzi S; Sánchez ER
    Cell Stress Chaperones; 1999 Dec; 4(4):223-34. PubMed ID: 10590836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptional regulation and binding of heat shock factor 1 and heat shock factor 2 to 32 human heat shock genes during thermal stress and differentiation.
    Trinklein ND; Chen WC; Kingston RE; Myers RM
    Cell Stress Chaperones; 2004 Mar; 9(1):21-8. PubMed ID: 15270074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Heat Shock Factors in Stress-Induced Transcription: An Update.
    Bunch H; Calderwood SK
    Methods Mol Biol; 2023; 2693():25-38. PubMed ID: 37540424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional role for heat shock factors in the transcriptional regulation of human RANK ligand gene expression in stromal/osteoblast cells.
    Roccisana JL; Kawanabe N; Kajiya H; Koide M; Roodman GD; Reddy SV
    J Biol Chem; 2004 Mar; 279(11):10500-7. PubMed ID: 14699143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The heat shock paradox and cardiac myocytes: role of heat shock factor.
    Kobba S; Kim SC; Chen L; Kim E; Tran AL; Knuefermann P; Knowlton AA
    Shock; 2011 May; 35(5):478-84. PubMed ID: 21192280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ca(2+) and calmodulin modulate DNA-binding activity of maize heat shock transcription factor in vitro.
    Li B; Liu HT; Sun DY; Zhou RG
    Plant Cell Physiol; 2004 May; 45(5):627-34. PubMed ID: 15169945
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic effect of heat shock pretreatment on apoptotic responses to TNF-alpha in liver cells.
    Wang S; Chen PC; Berthiaume F; Toner M; Jayaraman A; Yarmush ML
    J Biomech Eng; 2009 Jul; 131(7):071003. PubMed ID: 19640128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heat shock factor 1 inhibits nuclear factor-kappaB nuclear binding activity during endotoxin tolerance and heat shock.
    Song M; Pinsky MR; Kellum JA
    J Crit Care; 2008 Sep; 23(3):406-15. PubMed ID: 18725048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A high affinity HSF-1 binding site in the 5'-untranslated region of the murine tumor necrosis factor-alpha gene is a transcriptional repressor.
    Singh IS; He JR; Calderwood S; Hasday JD
    J Biol Chem; 2002 Feb; 277(7):4981-8. PubMed ID: 11734555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crosstalk between HSF1 and HSF2 during the heat shock response in mouse testes.
    Korfanty J; Stokowy T; Widlak P; Gogler-Piglowska A; Handschuh L; Podkowiński J; Vydra N; Naumowicz A; Toma-Jonik A; Widlak W
    Int J Biochem Cell Biol; 2014 Dec; 57():76-83. PubMed ID: 25450459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anti-apoptotic effects of L-glutamine-mediated transcriptional modulation of the heat shock protein 72 during heat shock.
    Ropeleski MJ; Riehm J; Baer KA; Musch MW; Chang EB
    Gastroenterology; 2005 Jul; 129(1):170-84. PubMed ID: 16012946
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of tumor necrosis factor-alpha transcription in macrophages exposed to febrile range temperature. A possible role for heat shock factor-1 as a negative transcriptional regulator.
    Singh IS; Viscardi RM; Kalvakolanu I; Calderwood S; Hasday JD
    J Biol Chem; 2000 Mar; 275(13):9841-8. PubMed ID: 10734139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.