These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 18367782)

  • 21. Identification and analysis of the gag-pol ribosomal frameshift site of feline immunodeficiency virus.
    Morikawa S; Bishop DH
    Virology; 1992 Feb; 186(2):389-97. PubMed ID: 1310175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site.
    Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA
    J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly conserved RNA pseudoknots at the Gag-Pol junction of HIV-1 suggest a novel mechanism of -1 ribosomal frameshifting.
    Huang X; Yang Y; Wang G; Cheng Q; Du Z
    RNA; 2014 May; 20(5):587-93. PubMed ID: 24671765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The virion-associated Gag-Pol is decreased in chimeric Moloney murine leukemia viruses in which the readthrough region is replaced by the frameshift region of the human immunodeficiency virus type 1.
    Gendron K; Dulude D; Lemay G; Ferbeyre G; Brakier-Gingras L
    Virology; 2005 Apr; 334(2):342-52. PubMed ID: 15780884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure of the RNA signal essential for translational frameshifting in HIV-1.
    Gaudin C; Mazauric MH; Traïkia M; Guittet E; Yoshizawa S; Fourmy D
    J Mol Biol; 2005 Jun; 349(5):1024-35. PubMed ID: 15907937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulated ribosomal frameshifting by an RNA-protein interaction.
    Kollmus H; Hentze MW; Hauser H
    RNA; 1996 Apr; 2(4):316-23. PubMed ID: 8634912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HIV-1 frameshift efficiency is primarily determined by the stability of base pairs positioned at the mRNA entrance channel of the ribosome.
    Mouzakis KD; Lang AL; Vander Meulen KA; Easterday PD; Butcher SE
    Nucleic Acids Res; 2013 Feb; 41(3):1901-13. PubMed ID: 23248007
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The energy landscape of -1 ribosomal frameshifting.
    Choi J; O'Loughlin S; Atkins JF; Puglisi JD
    Sci Adv; 2020 Jan; 6(1):eaax6969. PubMed ID: 31911945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Programmed +1 frameshifting stimulated by complementarity between a downstream mRNA sequence and an error-correcting region of rRNA.
    Li Z; Stahl G; Farabaugh PJ
    RNA; 2001 Feb; 7(2):275-84. PubMed ID: 11233984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure-function analysis of the ribosomal frameshifting signal of two human immunodeficiency virus type 1 isolates with increased resistance to viral protease inhibitors.
    Girnary R; King L; Robinson L; Elston R; Brierley I
    J Gen Virol; 2007 Jan; 88(Pt 1):226-235. PubMed ID: 17170455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV.
    Brierley I; Dos Ramos FJ
    Virus Res; 2006 Jul; 119(1):29-42. PubMed ID: 16310880
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA signals for translation frameshift: influence of stem size and slippery sequence.
    Honda A; Nakamura T; Nishimura S
    Biochem Biophys Res Commun; 1995 Aug; 213(2):575-82. PubMed ID: 7646514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutational analysis of the "slippery-sequence" component of a coronavirus ribosomal frameshifting signal.
    Brierley I; Jenner AJ; Inglis SC
    J Mol Biol; 1992 Sep; 227(2):463-79. PubMed ID: 1404364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A basis for new approaches to the chemotherapy of AIDS: novel genes in HIV-1 potentially encode selenoproteins expressed by ribosomal frameshifting and termination suppression.
    Taylor EW; Ramanathan CS; Jalluri RK; Nadimpalli RG
    J Med Chem; 1994 Aug; 37(17):2637-54. PubMed ID: 8064794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamic control of -1 programmed ribosomal frameshifting.
    Bock LV; Caliskan N; Korniy N; Peske F; Rodnina MV; Grubmüller H
    Nat Commun; 2019 Oct; 10(1):4598. PubMed ID: 31601802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Special peptidyl-tRNA molecules can promote translational frameshifting without slippage.
    Vimaladithan A; Farabaugh PJ
    Mol Cell Biol; 1994 Dec; 14(12):8107-16. PubMed ID: 7969148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suppression of translation frameshift by upstream termination codon.
    Honda A; Nishimura S
    Biochem Biophys Res Commun; 1996 Apr; 221(3):602-8. PubMed ID: 8630007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms and biomedical implications of -1 programmed ribosome frameshifting on viral and bacterial mRNAs.
    Korniy N; Samatova E; Anokhina MM; Peske F; Rodnina MV
    FEBS Lett; 2019 Jul; 593(13):1468-1482. PubMed ID: 31222875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stem-loop structure of Cocksfoot mottle virus RNA is indispensable for programmed -1 ribosomal frameshifting.
    Tamm T; Suurväli J; Lucchesi J; Olspert A; Truve E
    Virus Res; 2009 Dec; 146(1-2):73-80. PubMed ID: 19748532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of the human immunodeficiency virus frameshift signal in a bacterial cell-free system: influence of an interaction between the ribosome and a stem-loop structure downstream from the slippery site.
    Brunelle MN; Payant C; Lemay G; Brakier-Gingras L
    Nucleic Acids Res; 1999 Dec; 27(24):4783-91. PubMed ID: 10572179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.