These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 18368281)
21. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Castaldi P; Santona L; Melis P Chemosphere; 2005 Jul; 60(3):365-71. PubMed ID: 15924955 [TBL] [Abstract][Full Text] [Related]
23. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity. Bidar G; Garçon G; Pruvot C; Dewaele D; Cazier F; Douay F; Shirali P Environ Pollut; 2007 Jun; 147(3):546-53. PubMed ID: 17141383 [TBL] [Abstract][Full Text] [Related]
24. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
25. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Brunner I; Luster J; Günthardt-Goerg MS; Frey B Environ Pollut; 2008 Apr; 152(3):559-68. PubMed ID: 17707113 [TBL] [Abstract][Full Text] [Related]
26. Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant growth promoting bacteria. Fatnassi IC; Chiboub M; Saadani O; Jebara M; Jebara SH J Basic Microbiol; 2015 Mar; 55(3):303-11. PubMed ID: 24338717 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of the phytotoxicity of contaminated sediments deposited "on soil": II. Impact of water draining from deposits on the development and physiological status of neighbouring plants at growth stage. Bedell JP; Briant A; Delolme C; Lassabatère L; Perrodin Y Chemosphere; 2006 Mar; 62(8):1311-23. PubMed ID: 16169046 [TBL] [Abstract][Full Text] [Related]
28. In situ phytostabilisation capacity of three legumes and their associated Plant Growth Promoting Bacteria (PGPBs) in mine tailings of northern Tunisia. Saadani O; Fatnassi IC; Chiboub M; Abdelkrim S; Barhoumi F; Jebara M; Jebara SH Ecotoxicol Environ Saf; 2016 Aug; 130():263-9. PubMed ID: 27151677 [TBL] [Abstract][Full Text] [Related]
29. Effects of heavy-metal-contaminated soil on growth, phenology and biomass turnover of Hieracium piloselloides. Ryser P; Sauder WR Environ Pollut; 2006 Mar; 140(1):52-61. PubMed ID: 16185797 [TBL] [Abstract][Full Text] [Related]
30. Remediation of metal contaminated soil with mineral-amended composts. van Herwijnen R; Hutchings TR; Al-Tabbaa A; Moffat AJ; Johns ML; Ouki SK Environ Pollut; 2007 Dec; 150(3):347-54. PubMed ID: 17399876 [TBL] [Abstract][Full Text] [Related]
31. "In situ" phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Dary M; Chamber-Pérez MA; Palomares AJ; Pajuelo E J Hazard Mater; 2010 May; 177(1-3):323-30. PubMed ID: 20056325 [TBL] [Abstract][Full Text] [Related]
32. The use of vetiver for remediation of heavy metal soil contamination. Antiochia R; Campanella L; Ghezzi P; Movassaghi K Anal Bioanal Chem; 2007 Jun; 388(4):947-56. PubMed ID: 17468861 [TBL] [Abstract][Full Text] [Related]
33. Effects of humic acids on phytoextraction of Cu and Cd from sediment by Elodea nuttallii. Wang Q; Li Z; Cheng S; Wu Z Chemosphere; 2010 Jan; 78(5):604-8. PubMed ID: 19959204 [TBL] [Abstract][Full Text] [Related]
34. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. Sheng X; He L; Wang Q; Ye H; Jiang C J Hazard Mater; 2008 Jun; 155(1-2):17-22. PubMed ID: 18082946 [TBL] [Abstract][Full Text] [Related]
35. Differential effect of metals/metalloids on the growth and element uptake of mesquite plants obtained from plants grown at a copper mine tailing and commercial seeds. Haque N; Peralta-Videa JR; Duarte-Gardea M; Gardea-Torresdey JL Bioresour Technol; 2009 Dec; 100(24):6177-82. PubMed ID: 19631524 [TBL] [Abstract][Full Text] [Related]
36. Cadmium and zinc accumulation in soybean: A threat to food safety? Shute T; Macfie SM Sci Total Environ; 2006 Dec; 371(1-3):63-73. PubMed ID: 16949649 [TBL] [Abstract][Full Text] [Related]
37. [Employment of associative bacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium]. Belimov AA; Kunakova AM; Safronova VI; Stepanok VV; Iudkin LIu; Alekseev IuV; Kozhemiakov AP Mikrobiologiia; 2004; 73(1):118-25. PubMed ID: 15074051 [TBL] [Abstract][Full Text] [Related]
38. Effects of Glomus mosseae on the toxicity of heavy metals to Vicia faba. Zhang XH; Lin AJ; Chen BD; Wang YS; Smith SE; Smith FA J Environ Sci (China); 2006; 18(4):721-6. PubMed ID: 17078551 [TBL] [Abstract][Full Text] [Related]
39. Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9. Wani PA; Khan MS Bull Environ Contam Toxicol; 2013 Jul; 91(1):117-24. PubMed ID: 23609454 [TBL] [Abstract][Full Text] [Related]
40. Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Wani PA; Khan MS; Zaidi A Arch Environ Contam Toxicol; 2008 Jul; 55(1):33-42. PubMed ID: 18166984 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]