These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18368411)

  • 1. In planta transformation of Notocactus scopa cv. Soonjung by Agrobacterium tumefaciens.
    Seol E; Jung Y; Lee J; Cho C; Kim T; Rhee Y; Lee S
    Plant Cell Rep; 2008 Jul; 27(7):1197-206. PubMed ID: 18368411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agrobacterium tumefaciens-mediated transformation of Rhipsalidopsis gaertneri.
    Al-Ramamneh EA; Sriskandarajah S; Serek M
    Plant Cell Rep; 2006 Nov; 25(11):1219-25. PubMed ID: 16799807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue Culture- and Selection-Independent Agrobacterium tumefaciens-Mediated Transformation of a Recalcitrant Grain Legume, Cowpea (Vigna unguiculata L. Walp).
    Kumar A; Sainger M; Jaiwal R; Chaudhary D; Jaiwal PK
    Mol Biotechnol; 2021 Aug; 63(8):710-718. PubMed ID: 33987815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agrobacterium-mediated in planta genetic transformation of sugarcane setts.
    Mayavan S; Subramanyam K; Jaganath B; Sathish D; Manickavasagam M; Ganapathi A
    Plant Cell Rep; 2015 Oct; 34(10):1835-48. PubMed ID: 26152769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agrobacterium tumefaciens-mediated transformation of Indian mulberry, Morus indica cv. K2: a time-phased screening strategy.
    Bhatnagar S; Khurana P
    Plant Cell Rep; 2003 Mar; 21(7):669-75. PubMed ID: 12789417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration.
    Bakshi S; Sadhukhan A; Mishra S; Sahoo L
    Plant Cell Rep; 2011 Dec; 30(12):2281-92. PubMed ID: 21853337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agrobacterium tumefaciens-mediated transformation of eggplant (Solanum melongena L.) using root explants.
    Franklin G; Lakshmi Sita G
    Plant Cell Rep; 2003 Feb; 21(6):549-54. PubMed ID: 12789429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic transformation of selected mature cork oak (Quercus suber L.) trees.
    Alvarez R; Alonso P; Cortizo M; Celestino C; Hernández I; Toribio M; Ordás RJ
    Plant Cell Rep; 2004 Oct; 23(4):218-23. PubMed ID: 15185122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agrobacterium tumefaciens-mediated transformation of Campanula carpatica: factors affecting transformation and regeneration of transgenic shoots.
    Sriskandarajah S; Frello S; Jørgensen K; Serek M
    Plant Cell Rep; 2004 Aug; 23(1-2):59-63. PubMed ID: 15114492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation.
    Tang W
    Plant Cell Rep; 2003 Feb; 21(6):555-62. PubMed ID: 12789430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation of the monocotyledonous Alstroemeria by Agrobacterium tumefaciens.
    Akutsu M; Ishizaki T; Sato H
    Plant Cell Rep; 2004 Mar; 22(8):561-8. PubMed ID: 14615906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consistent and stable expression of the nptII, uidA and bar genes in transgenic Pinus radiata after Agrobacterium tumefaciens-mediated transformation using nurse cultures.
    Charity JA; Holland L; Grace LJ; Walter C
    Plant Cell Rep; 2005 Feb; 23(9):606-16. PubMed ID: 15449015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive expression of the tzs gene from Agrobacterium tumefaciens virG mutant strains is responsible for improved transgenic plant regeneration in cotton meristem transformation.
    Ye X; Chen Y; Wan Y; Hong YJ; Ruebelt MC; Gilbertson LA
    Plant Cell Rep; 2016 Mar; 35(3):601-11. PubMed ID: 26650837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transgenic Pinus radiata from Agrobacterium tumefaciens-mediated transformation of cotyledons.
    Grant JE; Cooper PA; Dale TM
    Plant Cell Rep; 2004 Jul; 22(12):894-902. PubMed ID: 14986058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of phenotypically normal English elm (Ulmus procera) plantlets following transformation with an Agrobacterium tumefaciens binary vector.
    Gartland JS; McHugh AT; Brasier CM; Irvine RJ; Fenning TM; Gartland KM
    Tree Physiol; 2000 Jul; 20(13):901-7. PubMed ID: 11303580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment of regeneration and transformation system in Egyptian sesame (Sesamum indicum L.) cv Sohag 1.
    Al-Shafeay AF; Ibrahim AS; Nesiem MR; Tawfik MS
    GM Crops; 2011; 2(3):182-92. PubMed ID: 22179191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The green fluorescent protein as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation in Hevea brasiliensis (Müll. Arg).
    Leclercq J; Lardet L; Martin F; Chapuset T; Oliver G; Montoro P
    Plant Cell Rep; 2010 May; 29(5):513-22. PubMed ID: 20306052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pSiM24 is a novel versatile gene expression vector for transient assays as well as stable expression of foreign genes in plants.
    Sahoo DK; Dey N; Maiti IB
    PLoS One; 2014; 9(6):e98988. PubMed ID: 24897541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient
    Song C; Lu L; Guo Y; Xu H; Li R
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31137806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1.
    Chabaud M; de Carvalho-Niebel F; Barker DG
    Plant Cell Rep; 2003 Aug; 22(1):46-51. PubMed ID: 12827434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.