These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 18368419)

  • 1. Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity.
    Mendez-Villanueva A; Hamer P; Bishop D
    Eur J Appl Physiol; 2008 Jul; 103(4):411-9. PubMed ID: 18368419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling.
    Racinais S; Bishop D; Denis R; Lattier G; Mendez-Villaneuva A; Perrey S
    Med Sci Sports Exerc; 2007 Feb; 39(2):268-74. PubMed ID: 17277590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peripheral and Central Fatigue Development during All-Out Repeated Cycling Sprints.
    Hureau TJ; Ducrocq GP; Blain GM
    Med Sci Sports Exerc; 2016 Mar; 48(3):391-401. PubMed ID: 26496420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise performance is regulated during repeated sprints to limit the development of peripheral fatigue beyond a critical threshold.
    Hureau TJ; Olivier N; Millet GY; Meste O; Blain GM
    Exp Physiol; 2014 Jul; 99(7):951-63. PubMed ID: 24728680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical fitness and performance. Fatigue responses during repeated sprints matched for initial mechanical output.
    Mendez-Villanueva A; Hamer P; Bishop D
    Med Sci Sports Exerc; 2007 Dec; 39(12):2219-25. PubMed ID: 18046194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of innervation zone on electromyographic amplitude and mean power frequency during incremental cycle ergometry.
    Malek MH; Coburn JW; Weir JP; Beck TW; Housh TJ
    J Neurosci Methods; 2006 Jul; 155(1):126-33. PubMed ID: 16510193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of previous dynamic arm exercise on power output during repeated maximal sprint cycling.
    Bogdanis GC; Nevill ME; Lakomy HK
    J Sports Sci; 1994 Aug; 12(4):363-70. PubMed ID: 7932946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle coordination changes during intermittent cycling sprints.
    Billaut F; Basset FA; Falgairette G
    Neurosci Lett; 2005 Jun; 380(3):265-9. PubMed ID: 15862899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of high-intensity intermittent cycling sprints on neuromuscular activity.
    Billaut F; Basset FA; Giacomoni M; Lemaître F; Tricot V; Falgairette G
    Int J Sports Med; 2006 Jan; 27(1):25-30. PubMed ID: 16388438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. M-wave normalization of EMG signal to investigate heat stress and fatigue.
    Girard O; Bishop DJ; Racinais S
    J Sci Med Sport; 2018 May; 21(5):518-524. PubMed ID: 28803797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed.
    Mendez-Villanueva A; Edge J; Suriano R; Hamer P; Bishop D
    PLoS One; 2012; 7(12):e51977. PubMed ID: 23284836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromuscular fatigue of the elbow flexors during repeated maximal arm cycling sprints: the effects of forearm position.
    Lockyer EJ; Buckle NCM; Collins BW; Button DC
    Appl Physiol Nutr Metab; 2021 Jun; 46(6):606-616. PubMed ID: 33296273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between neuromuscular fatigue, muscle activation and the work done above the critical power during severe-intensity exercise.
    Ducrocq GP; Blain GM
    Exp Physiol; 2022 Apr; 107(4):312-325. PubMed ID: 35137992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromuscular activation of vastus intermedius muscle during fatiguing exercise.
    Watanabe K; Akima H
    J Electromyogr Kinesiol; 2010 Aug; 20(4):661-6. PubMed ID: 20133154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeated sprint ability but not neuromuscular fatigue is dependent on short versus long duration recovery time between sprints in healthy males.
    Monks MR; Compton CT; Yetman JD; Power KE; Button DC
    J Sci Med Sport; 2017 Jun; 20(6):600-605. PubMed ID: 27825551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the time of day on repeated all-out cycle performance and short-term recovery patterns.
    Giacomoni M; Billaut F; Falgairette G
    Int J Sports Med; 2006 Jun; 27(6):468-74. PubMed ID: 16586326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of blood lactate concentration and the level of oxygen uptake immediately before a cycling sprint on neuromuscular activation during repeated cycling sprints.
    Matsuura R; Ogata H; Yunoki T; Arimitsu T; Yano T
    J Physiol Anthropol; 2006 Jul; 25(4):267-73. PubMed ID: 16891756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Females show less decline in contractile function than males after repeated all-out cycling.
    Yoon SH; Cederbaum LA; Côté JN
    Appl Physiol Nutr Metab; 2024 Feb; 49(2):199-212. PubMed ID: 37820383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans.
    Bogdanis GC; Nevill ME; Lakomy HK; Boobis LH
    Acta Physiol Scand; 1998 Jul; 163(3):261-72. PubMed ID: 9715738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximal power, but not fatigability, is greater during repeated sprints performed in the afternoon.
    Racinais S; Perrey S; Denis R; Bishop D
    Chronobiol Int; 2010 Jun; 27(4):855-64. PubMed ID: 20560715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.