These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 18368419)

  • 21. Etiology of Neuromuscular Fatigue After Repeated Sprints Depends on Exercise Modality.
    Tomazin K; Morin JB; Millet GY
    Int J Sports Physiol Perform; 2017 Aug; 12(7):878-885. PubMed ID: 27918667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuromuscular and perceptual responses during repeated cycling sprints-usefulness of a "hypoxic to normoxic" recovery approach.
    Soo J; Billaut F; Bishop DJ; Christian RJ; Girard O
    Eur J Appl Physiol; 2020 Apr; 120(4):883-896. PubMed ID: 32086600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of age and mode of exercise on power output profiles during repeated sprints.
    Ratel S; Williams CA; Oliver J; Armstrong N
    Eur J Appl Physiol; 2004 Jun; 92(1-2):204-10. PubMed ID: 15045504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuromuscular fatigability during repeated-sprint exercise in male athletes.
    Goodall S; Charlton K; Howatson G; Thomas K
    Med Sci Sports Exerc; 2015 Mar; 47(3):528-36. PubMed ID: 25010404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hot conditions improve power output during repeated cycling sprints without modifying neuromuscular fatigue characteristics.
    Girard O; Bishop DJ; Racinais S
    Eur J Appl Physiol; 2013 Feb; 113(2):359-69. PubMed ID: 22743981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of resistive load on power output and fatigue during intermittent sprint cycling exercise in children.
    Bogdanis GC; Papaspyrou A; Theos A; Maridaki M
    Eur J Appl Physiol; 2007 Oct; 101(3):313-20. PubMed ID: 17602236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuromuscular Fatigue and Metabolism during High-Intensity Intermittent Exercise.
    Fiorenza M; Hostrup M; Gunnarsson TP; Shirai Y; Schena F; Iaia FM; Bangsbo J
    Med Sci Sports Exerc; 2019 Aug; 51(8):1642-1652. PubMed ID: 30817710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electromyographic adjustments during continuous and intermittent incremental fatiguing cycling.
    Martinez-Valdes E; Guzman-Venegas RA; Silvestre RA; Macdonald JH; Falla D; Araneda OF; Haichelis D
    Scand J Med Sci Sports; 2016 Nov; 26(11):1273-1282. PubMed ID: 26493490
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exercise-related sensations contribute to decrease power during repeated cycle sprints with limited influence on neural drive.
    Girard O; Billaut F; Christian RJ; Bradley PS; Bishop DJ
    Eur J Appl Physiol; 2017 Nov; 117(11):2171-2179. PubMed ID: 28852828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuromuscular fatigue of the knee extensors during repeated maximal intensity intermittent-sprints on a cycle ergometer.
    Pearcey GE; Murphy JR; Behm DG; Hay DC; Power KE; Button DC
    Muscle Nerve; 2015 Apr; 51(4):569-79. PubMed ID: 25043506
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The physiological responses to repeated upper-body sprint exercise in highly trained athletes.
    Sandbakk Ø; Skålvik TF; Spencer M; van Beekvelt M; Welde B; Hegge AM; Gjøvaag T; Ettema G
    Eur J Appl Physiol; 2015 Jun; 115(6):1381-91. PubMed ID: 25677383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of central and peripheral factors during repeated sprints at different levels of arterial O2 saturation.
    Billaut F; Kerris JP; Rodriguez RF; Martin DT; Gore CJ; Bishop DJ
    PLoS One; 2013; 8(10):e77297. PubMed ID: 24155938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuromuscular fatigability during repeated sprints assessed with an innovative cycle ergometer.
    Di Domenico H; Beaume JB; Peyrard A; Samozino P; Bowen M; Hintzy F; Millet GP; Hayes M; Lapole T; Rupp T
    Eur J Appl Physiol; 2022 May; 122(5):1189-1204. PubMed ID: 35212845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adding Whole-Body Vibration to Preconditioning Squat Exercise Increases Cycling Sprint Performance.
    Duc S; Rønnestad BR; Bertucci W
    J Strength Cond Res; 2020 May; 34(5):1354-1361. PubMed ID: 28902116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of different recovery patterns on repeated-sprint ability and neuromuscular responses.
    Billaut F; Basset FA
    J Sports Sci; 2007 Jun; 25(8):905-13. PubMed ID: 17474044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A metabolic basis for impaired muscle force production and neuromuscular compensation during sprint cycling.
    Bundle MW; Ernst CL; Bellizzi MJ; Wright S; Weyand PG
    Am J Physiol Regul Integr Comp Physiol; 2006 Nov; 291(5):R1457-64. PubMed ID: 16840656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuromuscular adjustments of the quadriceps muscle after repeated cycling sprints.
    Girard O; Bishop DJ; Racinais S
    PLoS One; 2013; 8(5):e61793. PubMed ID: 23650503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxygenation time course and neuromuscular fatigue during repeated cycling sprints with bilateral blood flow restriction.
    Willis SJ; Alvarez L; Borrani F; Millet GP
    Physiol Rep; 2018 Sep; 6(19):e13872. PubMed ID: 30295004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans.
    Thomas C; Perrey S; Lambert K; Hugon G; Mornet D; Mercier J
    J Appl Physiol (1985); 2005 Mar; 98(3):804-9. PubMed ID: 15531559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance and fatigue during repeated sprints: what is the appropriate sprint dose?
    Morin JB; Dupuy J; Samozino P
    J Strength Cond Res; 2011 Jul; 25(7):1918-24. PubMed ID: 21701281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.