These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 18368419)
21. Etiology of Neuromuscular Fatigue After Repeated Sprints Depends on Exercise Modality. Tomazin K; Morin JB; Millet GY Int J Sports Physiol Perform; 2017 Aug; 12(7):878-885. PubMed ID: 27918667 [TBL] [Abstract][Full Text] [Related]
22. Neuromuscular and perceptual responses during repeated cycling sprints-usefulness of a "hypoxic to normoxic" recovery approach. Soo J; Billaut F; Bishop DJ; Christian RJ; Girard O Eur J Appl Physiol; 2020 Apr; 120(4):883-896. PubMed ID: 32086600 [TBL] [Abstract][Full Text] [Related]
23. Effects of age and mode of exercise on power output profiles during repeated sprints. Ratel S; Williams CA; Oliver J; Armstrong N Eur J Appl Physiol; 2004 Jun; 92(1-2):204-10. PubMed ID: 15045504 [TBL] [Abstract][Full Text] [Related]
24. Neuromuscular fatigability during repeated-sprint exercise in male athletes. Goodall S; Charlton K; Howatson G; Thomas K Med Sci Sports Exerc; 2015 Mar; 47(3):528-36. PubMed ID: 25010404 [TBL] [Abstract][Full Text] [Related]
25. Hot conditions improve power output during repeated cycling sprints without modifying neuromuscular fatigue characteristics. Girard O; Bishop DJ; Racinais S Eur J Appl Physiol; 2013 Feb; 113(2):359-69. PubMed ID: 22743981 [TBL] [Abstract][Full Text] [Related]
26. Influence of resistive load on power output and fatigue during intermittent sprint cycling exercise in children. Bogdanis GC; Papaspyrou A; Theos A; Maridaki M Eur J Appl Physiol; 2007 Oct; 101(3):313-20. PubMed ID: 17602236 [TBL] [Abstract][Full Text] [Related]
27. Neuromuscular Fatigue and Metabolism during High-Intensity Intermittent Exercise. Fiorenza M; Hostrup M; Gunnarsson TP; Shirai Y; Schena F; Iaia FM; Bangsbo J Med Sci Sports Exerc; 2019 Aug; 51(8):1642-1652. PubMed ID: 30817710 [TBL] [Abstract][Full Text] [Related]
28. Electromyographic adjustments during continuous and intermittent incremental fatiguing cycling. Martinez-Valdes E; Guzman-Venegas RA; Silvestre RA; Macdonald JH; Falla D; Araneda OF; Haichelis D Scand J Med Sci Sports; 2016 Nov; 26(11):1273-1282. PubMed ID: 26493490 [TBL] [Abstract][Full Text] [Related]
29. Exercise-related sensations contribute to decrease power during repeated cycle sprints with limited influence on neural drive. Girard O; Billaut F; Christian RJ; Bradley PS; Bishop DJ Eur J Appl Physiol; 2017 Nov; 117(11):2171-2179. PubMed ID: 28852828 [TBL] [Abstract][Full Text] [Related]
30. Neuromuscular fatigue of the knee extensors during repeated maximal intensity intermittent-sprints on a cycle ergometer. Pearcey GE; Murphy JR; Behm DG; Hay DC; Power KE; Button DC Muscle Nerve; 2015 Apr; 51(4):569-79. PubMed ID: 25043506 [TBL] [Abstract][Full Text] [Related]
31. The physiological responses to repeated upper-body sprint exercise in highly trained athletes. Sandbakk Ø; Skålvik TF; Spencer M; van Beekvelt M; Welde B; Hegge AM; Gjøvaag T; Ettema G Eur J Appl Physiol; 2015 Jun; 115(6):1381-91. PubMed ID: 25677383 [TBL] [Abstract][Full Text] [Related]
32. Interaction of central and peripheral factors during repeated sprints at different levels of arterial O2 saturation. Billaut F; Kerris JP; Rodriguez RF; Martin DT; Gore CJ; Bishop DJ PLoS One; 2013; 8(10):e77297. PubMed ID: 24155938 [TBL] [Abstract][Full Text] [Related]
33. Neuromuscular fatigability during repeated sprints assessed with an innovative cycle ergometer. Di Domenico H; Beaume JB; Peyrard A; Samozino P; Bowen M; Hintzy F; Millet GP; Hayes M; Lapole T; Rupp T Eur J Appl Physiol; 2022 May; 122(5):1189-1204. PubMed ID: 35212845 [TBL] [Abstract][Full Text] [Related]