These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18368498)

  • 1. Computational prediction of ion permeation characteristics in the glycine receptor modified by photo-sensitive compounds.
    Cheng MH; Coalson RD; Cascio M; Kurnikova M
    J Comput Aided Mol Des; 2008 Aug; 22(8):563-70. PubMed ID: 18368498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical studies of the M2 transmembrane segment of the glycine receptor: models of the open pore structure and current-voltage characteristics.
    Cheng MH; Cascio M; Coalson RD
    Biophys J; 2005 Sep; 89(3):1669-80. PubMed ID: 15951389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brownian dynamic model of the glycine receptor chloride channel: effect of the position of charged amino acids on ion membrane currents.
    Boronovsky SE; Seraya IP; Nartsissov YR
    Syst Biol (Stevenage); 2006 Sep; 153(5):394-7. PubMed ID: 16986325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of the glycine receptor deduced from Brownian dynamics studies.
    O'Mara M; Barry PH; Chung SH
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):4310-5. PubMed ID: 12649321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An energy-efficient gating mechanism in the acetylcholine receptor channel suggested by molecular and Brownian dynamics.
    Corry B
    Biophys J; 2006 Feb; 90(3):799-810. PubMed ID: 16284265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Application of Brownian dynamics to the description of transmembrane ion flow as exemplified by the chloride channel of glycine receptor].
    Boronovskiĭ SE; Nartsissov IaR
    Biofizika; 2009; 54(3):448-53. PubMed ID: 19569504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation-selective mutations in the M2 domain of the inhibitory glycine receptor channel reveal determinants of ion-charge selectivity.
    Keramidas A; Moorhouse AJ; Pierce KD; Schofield PR; Barry PH
    J Gen Physiol; 2002 May; 119(5):393-410. PubMed ID: 11981020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Side chain flexibility and the pore dimensions in the GABAA receptor.
    Rossokhin AV; Zhorov BS
    J Comput Aided Mol Des; 2016 Jul; 30(7):559-67. PubMed ID: 27460059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homology modeling and molecular dynamics simulations of the alpha1 glycine receptor reveals different states of the channel.
    Cheng MH; Cascio M; Coalson RD
    Proteins; 2007 Aug; 68(2):581-93. PubMed ID: 17469203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selectivity of Protein Ion Channels and the Role of Buried Charges. Analytical Solutions, Numerical Calculations, and MD Simulations.
    García-Giménez E; Alcaraz A; Aguilella-Arzo M; Aguilella VM
    J Phys Chem B; 2015 Jul; 119(27):8475-9. PubMed ID: 26091047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloride channels of glycine and GABA receptors with blockers: Monte Carlo minimization and structure-activity relationships.
    Zhorov BS; Bregestovski PD
    Biophys J; 2000 Apr; 78(4):1786-803. PubMed ID: 10733960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycine receptors: what gets in and why?
    Barry PH; Schofield PR; Moorhouse AJ
    Clin Exp Pharmacol Physiol; 1999 Nov; 26(11):935-6. PubMed ID: 10561819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of a putative intersubunit electrostatic bond enhances agonist efficacy at the human α1 glycine receptor.
    Welsh BT; Todorovic J; Kirson D; Allen HM; Bayly MD; Mihic SJ
    Brain Res; 2017 Feb; 1657():148-155. PubMed ID: 27923639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The general anesthetic etomidate and fenamate mefenamic acid oppositely affect GABA
    Rossokhin A
    Eur Biophys J; 2020 Oct; 49(7):591-607. PubMed ID: 32940715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes.
    Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG
    Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic lattice grand canonical Monte Carlo simulation for ion current calculations in a model ion channel system.
    Hwang H; Schatz GC; Ratner MA
    J Chem Phys; 2007 Jul; 127(2):024706. PubMed ID: 17640144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical approach to predicting permeation in ion channels.
    Mashl RJ; Tang Y; Schnitzer J; Jakobsson E
    Biophys J; 2001 Nov; 81(5):2473-83. PubMed ID: 11606263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Ion-Permeable State of the Glycine Receptor Captured by Molecular Dynamics.
    Cerdan AH; Martin NÉ; Cecchini M
    Structure; 2018 Nov; 26(11):1555-1562.e4. PubMed ID: 30220542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of an intersubunit electrostatic bond is a critical step in glycine receptor activation.
    Todorovic J; Welsh BT; Bertaccini EJ; Trudell JR; Mihic SJ
    Proc Natl Acad Sci U S A; 2010 Apr; 107(17):7987-92. PubMed ID: 20385800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations.
    Chung SH; Allen TW; Kuyucak S
    Biophys J; 2002 Feb; 82(2):628-45. PubMed ID: 11806907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.