BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 18369198)

  • 1. Transmembrane helices that form two opposite homodimeric interactions: an asparagine scan study of alphaM and beta2 integrins.
    Parthasarathy K; Lin X; Tan SM; Law SK; Torres J
    Protein Sci; 2008 May; 17(5):930-8. PubMed ID: 18369198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two types of transmembrane homomeric interactions in the integrin receptor family are evolutionarily conserved.
    Lin X; Tan SM; Law SK; Torres J
    Proteins; 2006 Apr; 63(1):16-23. PubMed ID: 16444740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Position-dependence of stabilizing polar interactions of asparagine in transmembrane helical bundles.
    Lear JD; Gratkowski H; Adamian L; Liang J; DeGrado WF
    Biochemistry; 2003 Jun; 42(21):6400-7. PubMed ID: 12767221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity for homooligomer versus heterooligomer formation in integrin transmembrane helices.
    Zhu H; Metcalf DG; Streu CN; Billings PC; Degrado WF; Bennett JS
    J Mol Biol; 2010 Sep; 401(5):882-91. PubMed ID: 20615419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimerization of the transmembrane domain of Integrin alphaIIb subunit in cell membranes.
    Li R; Gorelik R; Nanda V; Law PB; Lear JD; DeGrado WF; Bennett JS
    J Biol Chem; 2004 Jun; 279(25):26666-73. PubMed ID: 15067009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unambiguous prediction of human integrin transmembrane heterodimer interactions using only homologous sequences.
    Lin X; Tan SM; Law SK; Torres J
    Proteins; 2006 Nov; 65(2):274-9. PubMed ID: 16909419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The beta-tail domain (betaTD) regulates physiologic ligand binding to integrin CD11b/CD18.
    Gupta V; Gylling A; Alonso JL; Sugimori T; Ianakiev P; Xiong JP; Arnaout MA
    Blood; 2007 Apr; 109(8):3513-20. PubMed ID: 17170130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions.
    Sulistijo ES; MacKenzie KR
    J Mol Biol; 2006 Dec; 364(5):974-90. PubMed ID: 17049556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane and Juxtamembrane Structure of αL Integrin in Bicelles.
    Surya W; Li Y; Millet O; Diercks T; Torres J
    PLoS One; 2013; 8(9):e74281. PubMed ID: 24069290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asn- and Asp-mediated interactions between transmembrane helices during translocon-mediated membrane protein assembly.
    Meindl-Beinker NM; Lundin C; Nilsson I; White SH; von Heijne G
    EMBO Rep; 2006 Nov; 7(11):1111-6. PubMed ID: 17008929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane helix-helix interactions are modulated by the sequence context and by lipid bilayer properties.
    Cymer F; Veerappan A; Schneider D
    Biochim Biophys Acta; 2012 Apr; 1818(4):963-73. PubMed ID: 21827736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A helix heterodimer in a lipid bilayer: prediction of the structure of an integrin transmembrane domain via multiscale simulations.
    Kalli AC; Hall BA; Campbell ID; Sansom MS
    Structure; 2011 Oct; 19(10):1477-84. PubMed ID: 22000516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions.
    Senes A; Gerstein M; Engelman DM
    J Mol Biol; 2000 Feb; 296(3):921-36. PubMed ID: 10677292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional studies with antibodies to the integrin beta 2 subunit. A model for the I-like domain.
    Huang C; Zang Q; Takagi J; Springer TA
    J Biol Chem; 2000 Jul; 275(28):21514-24. PubMed ID: 10779511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pivotal role for a conserved bulky residue at the α1-helix of the αI integrin domain in ligand binding.
    Wang Z; Thinn AMM; Zhu J
    J Biol Chem; 2017 Dec; 292(50):20756-20768. PubMed ID: 29079572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GXXXG and AXXXA: common alpha-helical interaction motifs in proteins, particularly in extremophiles.
    Kleiger G; Grothe R; Mallick P; Eisenberg D
    Biochemistry; 2002 May; 41(19):5990-7. PubMed ID: 11993993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of transmembrane domain interactions in signal transduction by alpha/beta integrins.
    Schneider D; Engelman DM
    J Biol Chem; 2004 Mar; 279(11):9840-6. PubMed ID: 14681217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex interactions at the helix-helix interface stabilize the glycophorin A transmembrane dimer.
    Doura AK; Fleming KG
    J Mol Biol; 2004 Nov; 343(5):1487-97. PubMed ID: 15491626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations.
    Petrache HI; Grossfield A; MacKenzie KR; Engelman DM; Woolf TB
    J Mol Biol; 2000 Sep; 302(3):727-46. PubMed ID: 10986130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermonomer hydrogen bonds enhance GxxxG-driven dimerization of the BNIP3 transmembrane domain: roles for sequence context in helix-helix association in membranes.
    Lawrie CM; Sulistijo ES; MacKenzie KR
    J Mol Biol; 2010 Mar; 396(4):924-36. PubMed ID: 20026130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.