BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

500 related articles for article (PubMed ID: 18369372)

  • 21. Small G-protein RhoE is underexpressed in prostate cancer and induces cell cycle arrest and apoptosis.
    Bektic J; Pfeil K; Berger AP; Ramoner R; Pelzer A; Schäfer G; Kofler K; Bartsch G; Klocker H
    Prostate; 2005 Sep; 64(4):332-40. PubMed ID: 15754346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Function and regulation of RhoE.
    Riento K; Villalonga P; Garg R; Ridley A
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):649-51. PubMed ID: 16042565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RhoE binds to ROCK I and inhibits downstream signaling.
    Riento K; Guasch RM; Garg R; Jin B; Ridley AJ
    Mol Cell Biol; 2003 Jun; 23(12):4219-29. PubMed ID: 12773565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calpastatin in rat myoblasts: transient diminution and decreased phosphorylation depend on myogenin-directed myoblast differentiation.
    Barnoy S; Kosower NS
    Int J Biochem Cell Biol; 2007; 39(1):253-61. PubMed ID: 16997608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Up-regulation of myometrial RHO effector proteins (PKN1 and DIAPH1) and CPI-17 (PPP1R14A) phosphorylation in human pregnancy is associated with increased GTP-RHOA in spontaneous preterm labor.
    Lartey J; Smith M; Pawade J; Strachan B; Mellor H; López Bernal A
    Biol Reprod; 2007 Jun; 76(6):971-82. PubMed ID: 17301291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TRPC1 regulates skeletal myoblast migration and differentiation.
    Louis M; Zanou N; Van Schoor M; Gailly P
    J Cell Sci; 2008 Dec; 121(Pt 23):3951-9. PubMed ID: 19001499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decorin enhances the proliferation and differentiation of myogenic cells through suppressing myostatin activity.
    Kishioka Y; Thomas M; Wakamatsu J; Hattori A; Sharma M; Kambadur R; Nishimura T
    J Cell Physiol; 2008 Jun; 215(3):856-67. PubMed ID: 18163379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fine regulation of RhoA and Rock is required for skeletal muscle differentiation.
    Castellani L; Salvati E; Alemà S; Falcone G
    J Biol Chem; 2006 Jun; 281(22):15249-57. PubMed ID: 16574652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural cell adhesion molecule (NCAM) and myoblast fusion.
    Charlton CA; Mohler WA; Blau HM
    Dev Biol; 2000 May; 221(1):112-9. PubMed ID: 10772795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RhoA/ROCK I signalling downstream of the P2Y13 ADP-receptor controls HDL endocytosis in human hepatocytes.
    Malaval C; Laffargue M; Barbaras R; Rolland C; Peres C; Champagne E; Perret B; Tercé F; Collet X; Martinez LO
    Cell Signal; 2009 Jan; 21(1):120-7. PubMed ID: 18948190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SHP-2 positively regulates myogenesis by coupling to the Rho GTPase signaling pathway.
    Kontaridis MI; Eminaga S; Fornaro M; Zito CI; Sordella R; Settleman J; Bennett AM
    Mol Cell Biol; 2004 Jun; 24(12):5340-52. PubMed ID: 15169898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Skeletal muscle differentiation and fusion are regulated by the BAR-containing Rho-GTPase-activating protein (Rho-GAP), GRAF1.
    Doherty JT; Lenhart KC; Cameron MV; Mack CP; Conlon FL; Taylor JM
    J Biol Chem; 2011 Jul; 286(29):25903-21. PubMed ID: 21622574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degenerative muscle fiber accelerates adipogenesis of intramuscular cells via RhoA signaling pathway.
    Hosoyama T; Ishiguro N; Yamanouchi K; Nishihara M
    Differentiation; 2009 Apr; 77(4):350-9. PubMed ID: 19281783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cholesterol depletion by methyl-beta-cyclodextrin enhances myoblast fusion and induces the formation of myotubes with disorganized nuclei.
    Mermelstein CS; Portilho DM; Medeiros RB; Matos AR; Einicker-Lamas M; Tortelote GG; Vieyra A; Costa ML
    Cell Tissue Res; 2005 Feb; 319(2):289-97. PubMed ID: 15549398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis.
    O'Connor RS; Mills ST; Jones KA; Ho SN; Pavlath GK
    J Cell Sci; 2007 Jan; 120(Pt 1):149-59. PubMed ID: 17164296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure.
    Wang PY; Yu HT; Tsai WB
    Biotechnol Bioeng; 2010 Jun; 106(2):285-94. PubMed ID: 20148416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential responses to oxidative stress and calcium influx on expression of the transforming growth factor-beta family in myoblasts and myotubes.
    Furutani Y; Murakami M; Funaba M
    Cell Biochem Funct; 2009 Dec; 27(8):578-82. PubMed ID: 19918931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization.
    Burattini S; Ferri P; Battistelli M; Curci R; Luchetti F; Falcieri E
    Eur J Histochem; 2004; 48(3):223-33. PubMed ID: 15596414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytoskeleton/stretch-activated ion channel interaction regulates myogenic differentiation of skeletal myoblasts.
    Formigli L; Meacci E; Sassoli C; Squecco R; Nosi D; Chellini F; Naro F; Francini F; Zecchi-Orlandini S
    J Cell Physiol; 2007 May; 211(2):296-306. PubMed ID: 17295211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface and inner cell behaviour along skeletal muscle cell in vitro differentiation.
    Curci R; Battistelli M; Burattini S; D'Emilio A; Ferri P; Lattanzi D; Ciuffoli S; Ambrogini P; Cuppini R; Falcieri E
    Micron; 2008 Oct; 39(7):843-51. PubMed ID: 18337109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.