These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 18369420)

  • 1. Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics.
    Ramsey SA; Klemm SL; Zak DE; Kennedy KA; Thorsson V; Li B; Gilchrist M; Gold ES; Johnson CD; Litvak V; Navarro G; Roach JC; Rosenberger CM; Rust AG; Yudkovsky N; Aderem A; Shmulevich I
    PLoS Comput Biol; 2008 Mar; 4(3):e1000021. PubMed ID: 18369420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Bioinformatics; 2008 Apr; 9():203. PubMed ID: 18426580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The induction of macrophage gene expression by LPS predominantly utilizes Myd88-independent signaling cascades.
    Björkbacka H; Fitzgerald KA; Huet F; Li X; Gregory JA; Lee MA; Ordija CM; Dowley NE; Golenbock DT; Freeman MW
    Physiol Genomics; 2004 Nov; 19(3):319-30. PubMed ID: 15367722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A temporal gate for viral enhancers to co-opt Toll-like-receptor transcriptional activation pathways upon acute infection.
    Kropp KA; Hsieh WY; Isern E; Forster T; Krause E; Brune W; Angulo A; Ghazal P
    PLoS Pathog; 2015 Apr; 11(4):e1004737. PubMed ID: 25856589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional activation induced in macrophages by Toll-like receptor (TLR) ligands: from expression profiling to a model of TLR signaling.
    Schmitz F; Mages J; Heit A; Lang R; Wagner H
    Eur J Immunol; 2004 Oct; 34(10):2863-73. PubMed ID: 15368303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Investigation of Multi-TLR Sensing Identifies Regulators of Sustained Gene Activation in Macrophages.
    Lin B; Dutta B; Fraser IDC
    Cell Syst; 2017 Jul; 5(1):25-37.e3. PubMed ID: 28750197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrative approach for causal gene identification and gene regulatory pathway inference.
    Tu Z; Wang L; Arbeitman MN; Chen T; Sun F
    Bioinformatics; 2006 Jul; 22(14):e489-96. PubMed ID: 16873511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring the role of transcription factors in regulatory networks.
    Veber P; Guziolowski C; Le Borgne M; Radulescu O; Siegel A
    BMC Bioinformatics; 2008 May; 9():228. PubMed ID: 18460200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential constitutive and cytokine-modulated expression of human Toll-like receptors in primary neutrophils, monocytes, and macrophages.
    O'Mahony DS; Pham U; Iyer R; Hawn TR; Liles WC
    Int J Med Sci; 2008 Jan; 5(1):1-8. PubMed ID: 18219369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orphan nuclear receptor Nur77 is involved in caspase-independent macrophage cell death.
    Kim SO; Ono K; Tobias PS; Han J
    J Exp Med; 2003 Jun; 197(11):1441-52. PubMed ID: 12782711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational inference of replication and transcription activator regulator activity in herpesvirus from gene expression data.
    Recchia A; Wit E; Vinciotti V; Kellam P
    IET Syst Biol; 2008 Nov; 2(6):385-96. PubMed ID: 19045834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular bioinformatics analysis demonstrates that a Toll‑like receptor signaling pathway is involved in the regulation of macrophage polarization.
    Ma B; Yang Y; Li Z; Zhao D; Zhang W; Jiang Y; Xue D
    Mol Med Rep; 2018 Nov; 18(5):4313-4320. PubMed ID: 30221738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation.
    Hu X; Chen J; Wang L; Ivashkiv LB
    J Leukoc Biol; 2007 Aug; 82(2):237-43. PubMed ID: 17502339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A causal inference approach for constructing transcriptional regulatory networks.
    Xing B; van der Laan MJ
    Bioinformatics; 2005 Nov; 21(21):4007-13. PubMed ID: 16131521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the response: predictive modeling of a highly central, pathogen-targeted core response module in macrophage activation.
    McDermott JE; Archuleta M; Thrall BD; Adkins JN; Waters KM
    PLoS One; 2011 Feb; 6(2):e14673. PubMed ID: 21339814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Host-pathogen dynamics through targeted secretome analysis of stimulated macrophages.
    Khan MM; Koppenol-Raab M; Kuriakose M; Manes NP; Goodlett DR; Nita-Lazar A
    J Proteomics; 2018 Oct; 189():34-38. PubMed ID: 29572161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomics Network Analysis of Polarized Macrophages.
    Chakrabarty JK; Kamal AHM; Shahinuzzaman ADA; Chowdhury SM
    Methods Mol Biol; 2020; 2184():61-75. PubMed ID: 32808218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Resolution Mapping and Dynamics of the Transcriptome, Transcription Factors, and Transcription Co-Factor Networks in Classically and Alternatively Activated Macrophages.
    Das A; Yang CS; Arifuzzaman S; Kim S; Kim SY; Jung KH; Lee YS; Chai YG
    Front Immunol; 2018; 9():22. PubMed ID: 29403501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting genetic regulatory response using classification.
    Middendorf M; Kundaje A; Wiggins C; Freund Y; Leslie C
    Bioinformatics; 2004 Aug; 20 Suppl 1():i232-40. PubMed ID: 15262804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome network component analysis with limited microarray data.
    Galbraith SJ; Tran LM; Liao JC
    Bioinformatics; 2006 Aug; 22(15):1886-94. PubMed ID: 16766556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.