BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18369429)

  • 21. Comparative analysis of regulatory motif discovery tools for transcription factor binding sites.
    Wei W; Yu XD
    Genomics Proteomics Bioinformatics; 2007 May; 5(2):131-42. PubMed ID: 17893078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finding regulatory elements and regulatory motifs: a general probabilistic framework.
    van Nimwegen E
    BMC Bioinformatics; 2007 Sep; 8 Suppl 6(Suppl 6):S4. PubMed ID: 17903285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frequency distribution of TATA Box and extension sequences on human promoters.
    Shi W; Zhou W
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S2. PubMed ID: 17217512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptional regulation by competing transcription factor modules.
    Hermsen R; Tans S; ten Wolde PR
    PLoS Comput Biol; 2006 Dec; 2(12):e164. PubMed ID: 17140283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning probabilistic models of cis-regulatory modules that represent logical and spatial aspects.
    Noto K; Craven M
    Bioinformatics; 2007 Jan; 23(2):e156-62. PubMed ID: 17237085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BLISS 2.0: a web-based tool for predicting conserved regulatory modules in distantly-related orthologous sequences.
    Meng H; Banerjee A; Zhou L
    Bioinformatics; 2007 Dec; 23(23):3249-50. PubMed ID: 17660203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of statistical significance criteria.
    Régnier M; Vandenbogaert M
    J Bioinform Comput Biol; 2006 Apr; 4(2):537-51. PubMed ID: 16819801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using TESS to predict transcription factor binding sites in DNA sequence.
    Schug J
    Curr Protoc Bioinformatics; 2008 Mar; Chapter 2():Unit 2.6. PubMed ID: 18428685
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring potential target genes of signaling pathways by predicting conserved transcription factor binding sites.
    Dieterich C; Herwig R; Vingron M
    Bioinformatics; 2003 Oct; 19 Suppl 2():ii50-6. PubMed ID: 14534171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A mammalian promoter model links cis elements to genetic networks.
    Wang J; Hannenhalli S
    Biochem Biophys Res Commun; 2006 Aug; 347(1):166-77. PubMed ID: 16806065
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Informative priors based on transcription factor structural class improve de novo motif discovery.
    Narlikar L; Gordân R; Ohler U; Hartemink AJ
    Bioinformatics; 2006 Jul; 22(14):e384-92. PubMed ID: 16873497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of tissue-specific cis-regulatory modules based on interactions between transcription factors.
    Yu X; Lin J; Zack DJ; Qian J
    BMC Bioinformatics; 2007 Nov; 8():437. PubMed ID: 17996093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting genetic regulatory response using classification.
    Middendorf M; Kundaje A; Wiggins C; Freund Y; Leslie C
    Bioinformatics; 2004 Aug; 20 Suppl 1():i232-40. PubMed ID: 15262804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ClusterDraw web server: a tool to identify and visualize clusters of binding motifs for transcription factors.
    Papatsenko D
    Bioinformatics; 2007 Apr; 23(8):1032-4. PubMed ID: 17308342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A graph-based approach to systematically reconstruct human transcriptional regulatory modules.
    Yan X; Mehan MR; Huang Y; Waterman MS; Yu PS; Zhou XJ
    Bioinformatics; 2007 Jul; 23(13):i577-86. PubMed ID: 17646346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new approach to the assessment of the quality of predictions of transcription factor binding sites.
    Nowakowski S; Tiuryn J
    J Biomed Inform; 2007 Apr; 40(2):139-49. PubMed ID: 16949346
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional inference from non-random distributions of conserved predicted transcription factor binding sites.
    Dieterich C; Rahmann S; Vingron M
    Bioinformatics; 2004 Aug; 20 Suppl 1():i109-15. PubMed ID: 15262788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multiple-feature framework for modelling and predicting transcription factor binding sites.
    Pudimat R; Schukat-Talamazzini EG; Backofen R
    Bioinformatics; 2005 Jul; 21(14):3082-8. PubMed ID: 15905283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finding sequence motifs with Bayesian models incorporating positional information: an application to transcription factor binding sites.
    Kim NK; Tharakaraman K; Mariño-Ramírez L; Spouge JL
    BMC Bioinformatics; 2008 Jun; 9():262. PubMed ID: 18533028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combining comparative genomics with de novo motif discovery to identify human transcription factor DNA-binding motifs.
    Mao L; Zheng WJ
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S21. PubMed ID: 17217514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.