These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 18369433)

  • 1. Prediction of human disease genes by human-mouse conserved coexpression analysis.
    Ala U; Piro RM; Grassi E; Damasco C; Silengo L; Oti M; Provero P; Di Cunto F
    PLoS Comput Biol; 2008 Mar; 4(3):e1000043. PubMed ID: 18369433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A similarity-based method for genome-wide prediction of disease-relevant human genes.
    Freudenberg J; Propping P
    Bioinformatics; 2002; 18 Suppl 2():S110-5. PubMed ID: 12385992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction.
    Piro RM; Ala U; Molineris I; Grassi E; Bracco C; Perego GP; Provero P; Di Cunto F
    Eur J Hum Genet; 2011 Nov; 19(11):1173-80. PubMed ID: 21654723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automatic and efficient pipeline for disease gene identification through utilizing family-based sequencing data.
    Song D; Li N; Liao L
    Biomed Mater Eng; 2015; 26 Suppl 1():S1797-803. PubMed ID: 26405949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Walking the interactome for prioritization of candidate disease genes.
    Köhler S; Bauer S; Horn D; Robinson PN
    Am J Hum Genet; 2008 Apr; 82(4):949-58. PubMed ID: 18371930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disease-gene discovery by integration of 3D gene expression and transcription factor binding affinities.
    Piro RM; Molineris I; Di Cunto F; Eils R; König R
    Bioinformatics; 2013 Feb; 29(4):468-75. PubMed ID: 23267172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved human disease candidate gene prioritization using mouse phenotype.
    Chen J; Xu H; Aronow BJ; Jegga AG
    BMC Bioinformatics; 2007 Oct; 8():392. PubMed ID: 17939863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Diagnostics in human genetics : Integration of phenotypic and genomic data].
    Köhler S; Robinson PN
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2017 May; 60(5):542-549. PubMed ID: 28293716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TOM: enhancement and extension of a tool suite for in silico approaches to multigenic hereditary disorders.
    Masotti D; Nardini C; Rossi S; Bonora E; Romeo G; Volinia S; Benini L
    Bioinformatics; 2008 Feb; 24(3):428-9. PubMed ID: 18048394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly consistent patterns for inherited human diseases at the molecular level.
    López-Bigas N; Blencowe BJ; Ouzounis CA
    Bioinformatics; 2006 Feb; 22(3):269-77. PubMed ID: 16287936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Searching for candidate genes in the new millennium.
    Bleck O; McGrath JA; South AP
    Clin Exp Dermatol; 2001 May; 26(3):279-83. PubMed ID: 11422176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes.
    Huang H; Winter EE; Wang H; Weinstock KG; Xing H; Goodstadt L; Stenson PD; Cooper DN; Smith D; Albà MM; Ponting CP; Fechtel K
    Genome Biol; 2004; 5(7):R47. PubMed ID: 15239832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GPNN: power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease.
    Motsinger AA; Lee SL; Mellick G; Ritchie MD
    BMC Bioinformatics; 2006 Jan; 7():39. PubMed ID: 16436204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next-generation sequencing approaches for genetic mapping of complex diseases.
    Casals F; Idaghdour Y; Hussin J; Awadalla P
    J Neuroimmunol; 2012 Jul; 248(1-2):10-22. PubMed ID: 22285396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speeding disease gene discovery by sequence based candidate prioritization.
    Adie EA; Adams RR; Evans KL; Porteous DJ; Pickard BS
    BMC Bioinformatics; 2005 Mar; 6():55. PubMed ID: 15766383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide identification of genes likely to be involved in human genetic disease.
    López-Bigas N; Ouzounis CA
    Nucleic Acids Res; 2004; 32(10):3108-14. PubMed ID: 15181176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined application of behavior genetics and microarray analysis to identify regional expression themes and gene-behavior associations.
    Letwin NE; Kafkafi N; Benjamini Y; Mayo C; Frank BC; Luu T; Lee NH; Elmer GI
    J Neurosci; 2006 May; 26(20):5277-87. PubMed ID: 16707780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes.
    Himmelstein DS; Baranzini SE
    PLoS Comput Biol; 2015 Jul; 11(7):e1004259. PubMed ID: 26158728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction.
    Wang J; Ma Z; Carr SA; Mertins P; Zhang H; Zhang Z; Chan DW; Ellis MJ; Townsend RR; Smith RD; McDermott JE; Chen X; Paulovich AG; Boja ES; Mesri M; Kinsinger CR; Rodriguez H; Rodland KD; Liebler DC; Zhang B
    Mol Cell Proteomics; 2017 Jan; 16(1):121-134. PubMed ID: 27836980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved method for identifying functionally linked proteins using phylogenetic profiles.
    Cokus S; Mizutani S; Pellegrini M
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S7. PubMed ID: 17570150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.