These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 18369504)

  • 1. Glass coating for PDMS microfluidic channels by sol-gel methods.
    Abate AR; Lee D; Do T; Holtze C; Weitz DA
    Lab Chip; 2008 Apr; 8(4):516-8. PubMed ID: 18369504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent-resistant photocurable liquid fluoropolymers for microfluidic device fabrication [corrected].
    Rolland JP; Van Dam RM; Schorzman DA; Quake SR; DeSimone JM
    J Am Chem Soc; 2004 Mar; 126(8):2322-3. PubMed ID: 14982433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface engineering of poly(dimethylsiloxane) microfluidic devices using transition metal sol-gel chemistry.
    Roman GT; Culbertson CT
    Langmuir; 2006 Apr; 22(9):4445-51. PubMed ID: 16618201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of reversibly adhesive fluidic devices using magnetism.
    Rafat M; Raad DR; Rowat AC; Auguste DT
    Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary-assembled microchip for universal integration of various chemical functions onto a single microfluidic device.
    Hisamoto H; Nakashima Y; Kitamura C; Funano S; Yasuoka M; Morishima K; Kikutani Y; Kitamori T; Terabe S
    Anal Chem; 2004 Jun; 76(11):3222-8. PubMed ID: 15167805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and fabrication of chemically robust three-dimensional microfluidic valves.
    Maltezos G; Garcia E; Hanrahan G; Gomez FA; Vyawahare S; van Dam RM; Chen Y; Scherer A
    Lab Chip; 2007 Sep; 7(9):1209-11. PubMed ID: 17713623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of Different Sol-Gel Coatings to Enhance the Lifetime of PDMS Devices: Evaluation of Their Biocompatibility.
    Aymerich M; Gómez-Varela AI; Álvarez E; Flores-Arias MT
    Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stop flow lithography in perfluoropolyether (PFPE) microfluidic channels.
    Bong KW; Lee J; Doyle PS
    Lab Chip; 2014 Dec; 14(24):4680-7. PubMed ID: 25316504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilayer soft lithography of perfluoropolyether based elastomer for microfluidic device fabrication.
    Devaraju NS; Unger MA
    Lab Chip; 2011 Jun; 11(11):1962-7. PubMed ID: 21503367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of PDMS-modified glass from cast-and-peel fabrication.
    Liu K; Tian Y; Pitchimani R; Huang M; Lincoln H; Pappas D
    Talanta; 2009 Jul; 79(2):333-8. PubMed ID: 19559887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-directed, graft polymerization within microfluidic channels.
    Hu S; Ren X; Bachman M; Sims CE; Li GP; Allbritton NL
    Anal Chem; 2004 Apr; 76(7):1865-70. PubMed ID: 15053645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of a microfluidic device for the compartmentalization of neuron soma and axons.
    Harris J; Lee H; Vahidi B; Tu C; Cribbs D; Jeon NL; Cotman C
    J Vis Exp; 2007; (7):261. PubMed ID: 18989432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-loading and cell culture in one layer microfluidic devices.
    Wang L; Ni XF; Luo CX; Zhang ZL; Pang DW; Chen Y
    Biomed Microdevices; 2009 Jun; 11(3):679-84. PubMed ID: 19130238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple fabrication of hydrophilic nanochannels using the chemical bonding between activated ultrathin PDMS layer and cover glass by oxygen plasma.
    Kim SH; Cui Y; Lee MJ; Nam SW; Oh D; Kang SH; Kim YS; Park S
    Lab Chip; 2011 Jan; 11(2):348-53. PubMed ID: 20957251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micromolding of solvent resistant microfluidic devices.
    Renckens TJ; Janeliunas D; van Vliet H; van Esch JH; Mul G; Kreutzer MT
    Lab Chip; 2011 Jun; 11(12):2035-8. PubMed ID: 21562649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices.
    Hung LH; Lin R; Lee AP
    Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube-coated solid-phase microextraction metal fiber based on sol-gel technique.
    Jiang R; Zhu F; Luan T; Tong Y; Liu H; Ouyang G; Pawliszyn J
    J Chromatogr A; 2009 May; 1216(22):4641-7. PubMed ID: 19394026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs.
    Yu L; Li CM; Liu Y; Gao J; Wang W; Gan Y
    Lab Chip; 2009 May; 9(9):1243-7. PubMed ID: 19370243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.