BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 18369526)

  • 1. Structural biology of proline catabolism.
    Tanner JJ
    Amino Acids; 2008 Nov; 35(4):719-30. PubMed ID: 18369526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein-protein interactions.
    Sanyal N; Arentson BW; Luo M; Tanner JJ; Becker DF
    J Biol Chem; 2015 Jan; 290(4):2225-34. PubMed ID: 25492892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, function, and mechanism of proline utilization A (PutA).
    Liu LK; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2017 Oct; 632():142-157. PubMed ID: 28712849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA).
    Moxley MA; Sanyal N; Krishnan N; Tanner JJ; Becker DF
    J Biol Chem; 2014 Feb; 289(6):3639-51. PubMed ID: 24352662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus.
    White TA; Krishnan N; Becker DF; Tanner JJ
    J Biol Chem; 2007 May; 282(19):14316-27. PubMed ID: 17344208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors.
    Zhang M; White TA; Schuermann JP; Baban BA; Becker DF; Tanner JJ
    Biochemistry; 2004 Oct; 43(39):12539-48. PubMed ID: 15449943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique structural features and sequence motifs of proline utilization A (PutA).
    Singh RK; Tanner JJ
    Front Biosci (Landmark Ed); 2012 Jan; 17(2):556-68. PubMed ID: 22201760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and structural characterization of tunnel-perturbing mutants in Bradyrhizobium japonicum proline utilization A.
    Arentson BW; Luo M; Pemberton TA; Tanner JJ; Becker DF
    Biochemistry; 2014 Aug; 53(31):5150-61. PubMed ID: 25046425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the proline dehydrogenase domain of the multifunctional PutA flavoprotein.
    Lee YH; Nadaraia S; Gu D; Becker DF; Tanner JJ
    Nat Struct Biol; 2003 Feb; 10(2):109-14. PubMed ID: 12514740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of prolines and hydroxyprolines binding to the l-glutamate-γ-semialdehyde dehydrogenase active site of bifunctional proline utilization A.
    Campbell AC; Bogner AN; Mao Y; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2021 Feb; 698():108727. PubMed ID: 33333077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate channeling in proline metabolism.
    Arentson BW; Sanyal N; Becker DF
    Front Biosci (Landmark Ed); 2012 Jan; 17(1):375-88. PubMed ID: 22201749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of the Membrane Binding Domain in Trifunctional Proline Utilization A.
    Christgen SL; Zhu W; Sanyal N; Bibi B; Tanner JJ; Becker DF
    Biochemistry; 2017 Nov; 56(47):6292-6303. PubMed ID: 29090935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Biology of Proline Catabolic Enzymes.
    Tanner JJ
    Antioxid Redox Signal; 2019 Feb; 30(4):650-673. PubMed ID: 28990412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conserved active site tyrosine residue of proline dehydrogenase helps enforce the preference for proline over hydroxyproline as the substrate.
    Ostrander EL; Larson JD; Schuermann JP; Tanner JJ
    Biochemistry; 2009 Feb; 48(5):951-9. PubMed ID: 19140736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein.
    Moxley MA; Becker DF
    Biochemistry; 2012 Jan; 51(1):511-20. PubMed ID: 22148640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate.
    Campbell AC; Becker DF; Gates KS; Tanner JJ
    ACS Chem Biol; 2020 Apr; 15(4):936-944. PubMed ID: 32159324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure.
    Korasick DA; Singh H; Pemberton TA; Luo M; Dhatwalia R; Tanner JJ
    FEBS J; 2017 Sep; 284(18):3029-3049. PubMed ID: 28710792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures and kinetics of monofunctional proline dehydrogenase provide insight into substrate recognition and conformational changes associated with flavin reduction and product release.
    Luo M; Arentson BW; Srivastava D; Becker DF; Tanner JJ
    Biochemistry; 2012 Dec; 51(50):10099-108. PubMed ID: 23151026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a Conserved Histidine As Being Critical for the Catalytic Mechanism and Functional Switching of the Multifunctional Proline Utilization A Protein.
    Moxley MA; Zhang L; Christgen S; Tanner JJ; Becker DF
    Biochemistry; 2017 Jun; 56(24):3078-3088. PubMed ID: 28558236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of proline catabolism in Pseudomonas aeruginosa PAO.
    Meile L; Soldati L; Leisinger T
    Arch Microbiol; 1982 Aug; 132(2):189-93. PubMed ID: 6812528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.