BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 18370031)

  • 1. Determination of genuine residents of plant endomembrane organelles using isotope tagging and multivariate statistics.
    Lilley KS; Dunkley TP
    Methods Mol Biol; 2008; 432():373-87. PubMed ID: 18370031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative proteomic analysis to profile dynamic changes in the spatial distribution of cellular proteins.
    Yan W; Hwang D; Aebersold R
    Methods Mol Biol; 2008; 432():389-401. PubMed ID: 18370032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of organelles by on-line two-dimensional liquid chromatography-tandem mass spectrometry.
    Romijn EP; Yates JR
    Methods Mol Biol; 2008; 432():1-16. PubMed ID: 18370007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of organelle proteins by isotope tagging (LOPIT).
    Dunkley TP; Watson R; Griffin JL; Dupree P; Lilley KS
    Mol Cell Proteomics; 2004 Nov; 3(11):1128-34. PubMed ID: 15295017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in qualitative and quantitative plant membrane proteomics.
    Kota U; Goshe MB
    Phytochemistry; 2011 Jul; 72(10):1040-60. PubMed ID: 21367437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping organelle proteins and protein complexes in Drosophila melanogaster.
    Tan DJ; Dvinge H; Christoforou A; Bertone P; Martinez Arias A; Lilley KS
    J Proteome Res; 2009 Jun; 8(6):2667-78. PubMed ID: 19317464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins.
    Li Kw; Hornshaw MP; van Minnen J; Smalla KH; Gundelfinger ED; Smit AB
    J Proteome Res; 2005; 4(3):725-33. PubMed ID: 15952719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of organelle purity using antibodies and specific assays : the example of the chloroplast envelope.
    Salvi D; Rolland N; Joyard J; Ferro M
    Methods Mol Biol; 2008; 432():345-56. PubMed ID: 18370029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants.
    Nelson BK; Cai X; Nebenführ A
    Plant J; 2007 Sep; 51(6):1126-36. PubMed ID: 17666025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Golgi apparatus and endoplasmic reticulum proteins from livers of juvenile and aged rats using a novel technique for separation and enrichment of organelles.
    Drahos KL; Tran HC; Kiri AN; Lan W; McRorie DK; Horn MJ
    J Biomol Tech; 2005 Dec; 16(4):347-55. PubMed ID: 16522856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and fractionation of the endoplasmic reticulum from castor bean (Ricinus communis) endosperm for proteomic analyses.
    Simon WJ; Maltman DJ; Slabas AR
    Methods Mol Biol; 2008; 425():203-15. PubMed ID: 18369899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying bona fide components of an organelle by isotope-coded labeling of subcellular fractions : an example in peroxisomes.
    Marelli M; Nesvizhskii AI; Aitchison JD
    Methods Mol Biol; 2008; 432():357-71. PubMed ID: 18370030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative proteomic approach to study subcellular localization of membrane proteins.
    Sadowski PG; Dunkley TP; Shadforth IP; Dupree P; Bessant C; Griffin JL; Lilley KS
    Nat Protoc; 2006; 1(4):1778-89. PubMed ID: 17487160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and proteomic analysis of lysosomal integral membrane proteins.
    Zhang H; Fan X; Bagshaw R; Mahuran DJ; Callahan JW
    Methods Mol Biol; 2008; 432():229-41. PubMed ID: 18370022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative peptide and protein profiling by mass spectrometry.
    Schmidt A; Bisle B; Kislinger T
    Methods Mol Biol; 2009; 492():21-38. PubMed ID: 19241025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the Arabidopsis organelle proteome.
    Dunkley TP; Hester S; Shadforth IP; Runions J; Weimar T; Hanton SL; Griffin JL; Bessant C; Brandizzi F; Hawes C; Watson RB; Dupree P; Lilley KS
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6518-23. PubMed ID: 16618929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organelle proteomics by label-free and SILAC-based protein correlation profiling.
    Dengjel J; Jakobsen L; Andersen JS
    Methods Mol Biol; 2010; 658():255-65. PubMed ID: 20839109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient isolation and quantitative proteomic analysis of cancer cell plasma membrane proteins for identification of metastasis-associated cell surface markers.
    Lund R; Leth-Larsen R; Jensen ON; Ditzel HJ
    J Proteome Res; 2009 Jun; 8(6):3078-90. PubMed ID: 19341246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics.
    Nikolovski N; Rubtsov D; Segura MP; Miles GP; Stevens TJ; Dunkley TP; Munro S; Lilley KS; Dupree P
    Plant Physiol; 2012 Oct; 160(2):1037-51. PubMed ID: 22923678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput localization of organelle proteins by mass spectrometry: a quantum leap for cell biology.
    Tan DJ; Martinez Arias A
    Bioessays; 2006 Aug; 28(8):780-4. PubMed ID: 16927390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.