BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 18370064)

  • 21. An efficient and targeted gene integration system for high-level antibody expression.
    Huang Y; Li Y; Wang YG; Gu X; Wang Y; Shen BF
    J Immunol Methods; 2007 Apr; 322(1-2):28-39. PubMed ID: 17350648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic characterization of CHO production host DG44 and derivative recombinant cell lines.
    Derouazi M; Martinet D; Besuchet Schmutz N; Flaction R; Wicht M; Bertschinger M; Hacker DL; Beckmann JS; Wurm FM
    Biochem Biophys Res Commun; 2006 Feb; 340(4):1069-77. PubMed ID: 16403443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic knockouts and knockins in human somatic cells.
    Rago C; Vogelstein B; Bunz F
    Nat Protoc; 2007; 2(11):2734-46. PubMed ID: 18007609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Failure to generate atheroprotective apolipoprotein AI phenotypes using synthetic RNA/DNA oligonucleotides (chimeraplasts).
    Manzano A; Mohri Z; Sperber G; Ogris M; Graham I; Dickson G; Owen JS
    J Gene Med; 2003 Sep; 5(9):795-802. PubMed ID: 12950070
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microinjection of Cre recombinase protein into zygotes enables specific deletion of two eukaryotic selection cassettes and enhances the expression of a DsRed2 reporter gene in Ccr2/Ccr5 double-deficient mice.
    Luckow B; Hänggli A; Maier H; Chilla S; Loewe RP; Dehmel S; Schlöndorff D; Loetscher P; Zerwes HG; Müller M
    Genesis; 2009 Aug; 47(8):545-58. PubMed ID: 19517561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving gene replacement by intracellular formation of linear homologous DNA.
    de Piédoue G; Maurisse R; Kuzniak I; Lopez B; Perrin A; Nègre O; Leboulch P; Feugeas JP
    J Gene Med; 2005 May; 7(5):649-56. PubMed ID: 15641108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of gene knockouts in cultured cells to study apoptosis.
    Lahti JM
    Methods; 1999 Apr; 17(4):305-12. PubMed ID: 10196101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Short hairpin RNA targeted to dihydrofolate reductase enhances the immunoglobulin G expression in gene-amplified stable Chinese hamster ovary cells.
    Wu SC; Hong WW; Liu JH
    Vaccine; 2008 Sep; 26(38):4969-74. PubMed ID: 18602963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of internally nuclease-protected single-strand DNA oligonucleotides and silencing of the mismatch repair protein, MSH2, enhances the replication of corrected cells following gene editing.
    Papaioannou I; Disterer P; Owen JS
    J Gene Med; 2009 Mar; 11(3):267-74. PubMed ID: 19153972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel tag-and-exchange (RMCE) strategies generate master cell clones with predictable and stable transgene expression properties.
    Qiao J; Oumard A; Wegloehner W; Bode J
    J Mol Biol; 2009 Jul; 390(4):579-94. PubMed ID: 19447116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accumulative scFv-Fc antibody gene integration into the hprt chromosomal locus of Chinese hamster ovary cells.
    Wang X; Kawabe Y; Kato R; Hada T; Ito A; Yamana Y; Kondo M; Kamihira M
    J Biosci Bioeng; 2017 Nov; 124(5):583-590. PubMed ID: 28662917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Development of site-specific integration system to high-level expression recombinant proteins in CHO cells].
    Zhou H; Liu ZG; Sun ZW; Yu WY
    Sheng Wu Gong Cheng Xue Bao; 2007 Jul; 23(4):756-62. PubMed ID: 17822058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient somatic gene targeting in the lymphoid human cell line DG75.
    Feederle R; Delecluse HJ; Rouault JP; Schepers A; Hammerschmidt W
    Gene; 2004 Dec; 343(1):91-7. PubMed ID: 15563834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeted gene modification in mouse ES cells using integrase-defective lentiviral vectors.
    Okada Y; Ueshin Y; Hasuwa H; Takumi K; Okabe M; Ikawa M
    Genesis; 2009 Apr; 47(4):217-23. PubMed ID: 19208434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation of high-recombinant- protein-producing Chinese hamster ovary (CHO) cells.
    Goergen JL; Monaco L
    Methods Mol Biol; 2004; 267():477-83. PubMed ID: 15269444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scalable transient gene expression in Chinese hamster ovary cells in instrumented and non-instrumented cultivation systems.
    Muller N; Derouazi M; Van Tilborgh F; Wulhfard S; Hacker DL; Jordan M; Wurm FM
    Biotechnol Lett; 2007 May; 29(5):703-11. PubMed ID: 17310326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of transient gene expression and culture viability using Chinese hamster ovary cells overexpressing Bcl-x(L).
    Majors BS; Betenbaugh MJ; Pederson NE; Chiang GG
    Biotechnol Bioeng; 2008 Oct; 101(3):567-78. PubMed ID: 18727128
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MicroRNAs: tiny targets for engineering CHO cell phenotypes?
    Barron N; Sanchez N; Kelly P; Clynes M
    Biotechnol Lett; 2011 Jan; 33(1):11-21. PubMed ID: 20872159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial artificial chromosome library for genome-wide analysis of Chinese hamster ovary cells.
    Omasa T; Cao Y; Park JY; Takagi Y; Kimura S; Yano H; Honda K; Asakawa S; Shimizu N; Ohtake H
    Biotechnol Bioeng; 2009 Dec; 104(5):986-94. PubMed ID: 19575438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Meganuclease-driven targeted integration in CHO-K1 cells for the fast generation of HTS-compatible cell-based assays.
    Cabaniols JP; Ouvry C; Lamamy V; Fery I; Craplet ML; Moulharat N; Guenin SP; Bedut S; Nosjean O; Ferry G; Devavry S; Jacqmarcq C; Lebuhotel C; Mathis L; Delenda C; Boutin JA; Duchâteau P; Cogé F; Pâques F
    J Biomol Screen; 2010 Sep; 15(8):956-67. PubMed ID: 20625180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.