BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 18370114)

  • 1. Detection of protein-protein interactions in live cells and animals with split firefly luciferase protein fragment complementation.
    Villalobos V; Naik S; Piwnica-Worms D
    Methods Mol Biol; 2008; 439():339-52. PubMed ID: 18370114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ratiometric bioluminescence indicators for monitoring cyclic adenosine 3',5'-monophosphate in live cells based on luciferase-fragment complementation.
    Takeuchi M; Nagaoka Y; Yamada T; Takakura H; Ozawa T
    Anal Chem; 2010 Nov; 82(22):9306-13. PubMed ID: 20979393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of dynamic protein-protein interactions in planta by a floated-leaf luciferase complementation imaging (FLuCI) assay using binary Gateway vectors.
    Gehl C; Kaufholdt D; Hamisch D; Bikker R; Kudla J; Mendel RR; Hänsch R
    Plant J; 2011 Aug; 67(3):542-53. PubMed ID: 21481030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing luciferase protein fragment complementation for bioluminescent imaging of protein-protein interactions in live cells and animals.
    Luker KE; Piwnica-Worms D
    Methods Enzymol; 2004; 385():349-60. PubMed ID: 15130748
    [No Abstract]   [Full Text] [Related]  

  • 5. Bioluminescent indicator for determining protein-protein interactions using intramolecular complementation of split click beetle luciferase.
    Kim SB; Otani Y; Umezawa Y; Tao H
    Anal Chem; 2007 Jul; 79(13):4820-6. PubMed ID: 17539598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals.
    Luker KE; Smith MC; Luker GD; Gammon ST; Piwnica-Worms H; Piwnica-Worms D
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12288-93. PubMed ID: 15284440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A redshifted codon-optimized firefly luciferase is a sensitive reporter for bioluminescence imaging.
    Caysa H; Jacob R; Müther N; Branchini B; Messerle M; Söling A
    Photochem Photobiol Sci; 2009 Jan; 8(1):52-6. PubMed ID: 19247529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model of the active site of firefly luciferase.
    Sandalova TP; Ugarova NN
    Biochemistry (Mosc); 1999 Aug; 64(8):962-7. PubMed ID: 10498816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of the loop between residues 223-235 in beetle luciferase bioluminescence spectra: a solvent gate for the active site of pH-sensitive luciferases.
    Viviani VR; Silva Neto AJ; Arnoldi FG; Barbosa JA; Ohmiya Y
    Photochem Photobiol; 2008; 84(1):138-44. PubMed ID: 18173713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circularly permutated bioluminescent probes for illuminating ligand-activated protein dynamics.
    Kim SB; Sato M; Tao H
    Bioconjug Chem; 2008 Dec; 19(12):2480-6. PubMed ID: 19049389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of recombinant firefly luciferase. Physicochemical properties and application.
    Lundovskikh IA; Dementieva EI; Ugarova NN
    Biochemistry (Mosc); 1998 Jun; 63(6):691-6. PubMed ID: 9668209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new firefly luciferase with bimodal spectrum: identification of structural determinants of spectral pH-sensitivity in firefly luciferases.
    Viviani VR; Oehlmeyer TL; Arnoldi FG; Brochetto-Braga MR
    Photochem Photobiol; 2005; 81(4):843-8. PubMed ID: 16124832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of spatial expression of firefly luciferase in transformed zebrafish.
    Mayerhofer R; Araki K; Szalay AA
    J Biolumin Chemilumin; 1995; 10(5):271-5. PubMed ID: 8533608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combinatorial library screening for developing an improved split-firefly luciferase fragment-assisted complementation system for studying protein-protein interactions.
    Paulmurugan R; Gambhir SS
    Anal Chem; 2007 Mar; 79(6):2346-53. PubMed ID: 17295448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of intramolecular luciferase complementation probe for detecting specific RNA.
    Endoh T; Mie M; Funabashi H; Sawasaki T; Endo Y; Kobatake E
    Bioconjug Chem; 2007; 18(3):956-62. PubMed ID: 17367182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ancestral luciferase in the Malpighi tubules of a non-bioluminescent beetle!
    Viviani VR; Prado RA; Arnoldi FC; Abdalla FC
    Photochem Photobiol Sci; 2009 Jan; 8(1):57-61. PubMed ID: 19247530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Split luciferase complementation assay to study protein-protein interactions in Arabidopsis protoplasts.
    Fujikawa Y; Kato N
    Plant J; 2007 Oct; 52(1):185-95. PubMed ID: 17662028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of the adenylate-forming protein family in beetles: multiple luciferase gene paralogues in fireflies and glow-worms.
    Day JC; Goodall TI; Bailey MJ
    Mol Phylogenet Evol; 2009 Jan; 50(1):93-101. PubMed ID: 18951986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioluminescence: imaging modality for in vitro and in vivo gene expression.
    Sadikot RT; Blackwell TS
    Methods Mol Biol; 2008; 477():383-94. PubMed ID: 19082962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Split Gaussia luciferase-based bioluminescence template for tracing protein dynamics in living cells.
    Kim SB; Sato M; Tao H
    Anal Chem; 2009 Jan; 81(1):67-74. PubMed ID: 19061336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.