BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 18370947)

  • 1. Hip orthosis powered by pneumatic artificial muscle: voluntary activation in absence of myoelectrical signal.
    do Nascimento BG; Vimieiro CB; Nagem DA; Pinotti M
    Artif Organs; 2008 Apr; 32(4):317-22. PubMed ID: 18370947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved powered ankle-foot orthosis using proportional myoelectric control.
    Ferris DP; Gordon KE; Sawicki GS; Peethambaran A
    Gait Posture; 2006 Jun; 23(4):425-8. PubMed ID: 16098749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait evaluation of an automatic stance-control knee orthosis in a patient with postpoliomyelitis.
    Hebert JS; Liggins AB
    Arch Phys Med Rehabil; 2005 Aug; 86(8):1676-80. PubMed ID: 16084826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and simulation of a new powered gait orthosis for paraplegic patients.
    Arazpour M; Chitsazan A; Hutchins SW; Ghomshe FT; Mousavi ME; Takamjani EE; Aminian G; Rahgozar M; Bani MA
    Prosthet Orthot Int; 2012 Mar; 36(1):125-30. PubMed ID: 22235109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical and electromyographic evaluation of ankle foot orthosis and dynamic ankle foot orthosis in spastic cerebral palsy.
    Lam WK; Leong JC; Li YH; Hu Y; Lu WW
    Gait Posture; 2005 Nov; 22(3):189-97. PubMed ID: 16214658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait evaluation of a novel hip constraint orthosis with implication for walking in paraplegia.
    Audu ML; To CS; Kobetic R; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):610-8. PubMed ID: 20378478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of powered gait orthosis on walking in individuals with paraplegia.
    Arazpour M; Ahmadi Bani M; Kashani RV; Tabatabai Ghomshe F; Mousavi ME; Hutchins SW
    Prosthet Orthot Int; 2013 Aug; 37(4):261-7. PubMed ID: 23172910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new hybrid spring brake orthosis for controlling hip and knee flexion in the swing phase.
    Gharooni S; Heller B; Tokhi MO
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):106-7. PubMed ID: 11482357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis.
    Gordon KE; Sawicki GS; Ferris DP
    J Biomech; 2006; 39(10):1832-41. PubMed ID: 16023126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic gait trainer in water: development of an underwater gait-training orthosis.
    Miyoshi T; Hiramatsu K; Yamamoto S; Nakazawa K; Akai M
    Disabil Rehabil; 2008; 30(2):81-7. PubMed ID: 17852216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking.
    To CS; Kirsch RF; Kobetic R; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):227-35. PubMed ID: 16003904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a novel powered hip orthosis for walking by a spinal cord injury patient: a single case study.
    Arazpour M; Chitsazan A; Hutchins SW; Ghomshe FT; Mousavi ME; Takamjani EE; Aminian G; Rahgozar M; Bani MA
    Prosthet Orthot Int; 2012 Mar; 36(1):105-12. PubMed ID: 22235110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy and safety of a hip flexion assist orthosis in ambulatory multiple sclerosis patients.
    Sutliff MH; Naft JM; Stough DK; Lee JC; Arrigain SS; Bethoux FA
    Arch Phys Med Rehabil; 2008 Aug; 89(8):1611-7. PubMed ID: 18674995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimentally reduced hip abductor function during walking: Implications for knee joint loads.
    Henriksen M; Aaboe J; Simonsen EB; Alkjaer T; Bliddal H
    J Biomech; 2009 Jun; 42(9):1236-40. PubMed ID: 19368926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait improvement of hemiplegic patients using an ankle-foot orthosis with assistance of heel rocker function.
    Yamamoto S; Hagiwara A; Mizobe T; Yokoyama O; Yasui T
    Prosthet Orthot Int; 2009 Dec; 33(4):307-23. PubMed ID: 19961292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of gait symmetry in poliomyelitis subjects: Comparison of a conventional knee-ankle-foot orthosis and a new powered knee-ankle-foot orthosis.
    Arazpour M; Ahmadi F; Bahramizadeh M; Samadian M; Mousavi ME; Bani MA; Hutchins SW
    Prosthet Orthot Int; 2016 Dec; 40(6):689-695. PubMed ID: 26269446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary evaluation of a controlled-brake orthosis for FES-aided gait.
    Goldfarb M; Korkowski K; Harrold B; Durfee W
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):241-8. PubMed ID: 14518787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance specification for lower limb orthotic devices.
    Johnson GR; Ferrarin M; Harrington M; Hermens H; Jonkers I; Mak P; Stallard J
    Clin Biomech (Bristol, Avon); 2004 Aug; 19(7):711-8. PubMed ID: 15288457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ankle-foot orthosis powered by artificial pneumatic muscles.
    Ferris DP; Czerniecki JM; Hannaford B
    J Appl Biomech; 2005 May; 21(2):189-97. PubMed ID: 16082019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.