These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 18371201)
1. Improved production of human type II procollagen in the yeast Pichia pastoris in shake flasks by a wireless-controlled fed-batch system. Ruottinen M; Bollok M; Kögler M; Neubauer A; Krause M; Hämäläinen ER; Myllyharju J; Vasala A; Neubauer P BMC Biotechnol; 2008 Mar; 8():33. PubMed ID: 18371201 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of thermoalkaliphilic xylanase production by Pichia pastoris through novel fed-batch strategy in high cell-density fermentation. Shang T; Si D; Zhang D; Liu X; Zhao L; Hu C; Fu Y; Zhang R BMC Biotechnol; 2017 Jun; 17(1):55. PubMed ID: 28633643 [TBL] [Abstract][Full Text] [Related]
3. A new wireless system for decentralised measurement of physiological parameters from shake flasks. Vasala A; Panula J; Bollók M; Illmann L; Hälsig C; Neubauer P Microb Cell Fact; 2006 Feb; 5():8. PubMed ID: 16504107 [TBL] [Abstract][Full Text] [Related]
4. Functional recombinant protein is present in the pre-induction phases of Pichia pastoris cultures when grown in bioreactors, but not shake-flasks. Bawa Z; Routledge SJ; Jamshad M; Clare M; Sarkar D; Dickerson I; Ganzlin M; Poyner DR; Bill RM Microb Cell Fact; 2014 Sep; 13(1):127. PubMed ID: 25186468 [TBL] [Abstract][Full Text] [Related]
5. Optimization of human serum albumin production in methylotrophic yeast Pichia pastoris by repeated fed-batch fermentation. Ohya T; Ohyama M; Kobayashi K Biotechnol Bioeng; 2005 Jun; 90(7):876-87. PubMed ID: 15864809 [TBL] [Abstract][Full Text] [Related]
6. Regulation of alcohol oxidase 1 (AOX1) promoter and peroxisome biogenesis in different fermentation processes in Pichia pastoris. Kim S; Warburton S; Boldogh I; Svensson C; Pon L; d'Anjou M; Stadheim TA; Choi BK J Biotechnol; 2013 Jul; 166(4):174-81. PubMed ID: 23735484 [TBL] [Abstract][Full Text] [Related]
7. Bioprocess and downstream optimization of recombinant bovine chymosin B in Pichia (Komagataella) pastoris under methanol-inducible AOXI promoter. Noseda DG; Blasco M; Recúpero M; Galvagno MÁ Protein Expr Purif; 2014 Dec; 104():85-91. PubMed ID: 25278015 [TBL] [Abstract][Full Text] [Related]
8. On-line monitoring of the methanol concentration in Pichia pastoris cultures producing an heterologous lipase by sequential injection analysis. Surribas A; Cos O; Montesinos JL; Valero F Biotechnol Lett; 2003 Nov; 25(21):1795-800. PubMed ID: 14677700 [TBL] [Abstract][Full Text] [Related]
9. High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Glazyrina J; Materne EM; Dreher T; Storm D; Junne S; Adams T; Greller G; Neubauer P Microb Cell Fact; 2010 May; 9():42. PubMed ID: 20509968 [TBL] [Abstract][Full Text] [Related]
10. Cloning, expression and optimized production in a bioreactor of bovine chymosin B in Pichia (Komagataella) pastoris under AOX1 promoter. Noseda DG; Recúpero MN; Blasco M; Ortiz GE; Galvagno MA Protein Expr Purif; 2013 Dec; 92(2):235-44. PubMed ID: 24141135 [TBL] [Abstract][Full Text] [Related]
11. Influence of methanol/sorbitol co-feeding rate on pAOX1 induction in a Pichia pastoris Mut+ strain in bioreactor with limited oxygen transfer rate. Carly F; Niu H; Delvigne F; Fickers P J Ind Microbiol Biotechnol; 2016 Apr; 43(4):517-23. PubMed ID: 26790417 [TBL] [Abstract][Full Text] [Related]
12. Improving the monitoring of methanol concentration during high cell density fermentation of Pichia pastoris. Ramon R; Feliu JX; Cos O; Montesinos JL; Berthet FX; Valero F Biotechnol Lett; 2004 Sep; 26(18):1447-52. PubMed ID: 15604779 [TBL] [Abstract][Full Text] [Related]
15. Oxygen-limited fed-batch process: an alternative control for Pichia pastoris recombinant protein processes. Charoenrat T; Ketudat-Cairns M; Stendahl-Andersen H; Jahic M; Enfors SO Bioprocess Biosyst Eng; 2005 Oct; 27(6):399-406. PubMed ID: 16080002 [TBL] [Abstract][Full Text] [Related]
16. An artificial neural network for membrane-bound catechol-O-methyltransferase biosynthesis with Pichia pastoris methanol-induced cultures. Pedro AQ; Martins LM; Dias JM; Bonifácio MJ; Queiroz JA; Passarinha LA Microb Cell Fact; 2015 Aug; 14():113. PubMed ID: 26246150 [TBL] [Abstract][Full Text] [Related]
17. Reduced oxygen supply increases process stability and product yield with recombinant Pichia pastoris. Trentmann O; Khatri NK; Hoffmann F Biotechnol Prog; 2004; 20(6):1766-75. PubMed ID: 15575710 [TBL] [Abstract][Full Text] [Related]
18. Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review. Yang Z; Zhang Z Biotechnol Adv; 2018; 36(1):182-195. PubMed ID: 29129652 [TBL] [Abstract][Full Text] [Related]
19. Codon optimization of xylA gene for recombinant glucose isomerase production in Pichia pastoris and fed-batch feeding strategies to fine-tune bioreactor performance. Ata Ö; Boy E; Güneş H; Çalık P Bioprocess Biosyst Eng; 2015 May; 38(5):889-903. PubMed ID: 25492311 [TBL] [Abstract][Full Text] [Related]
20. Improvement of the recombinant phytase expression by intermittent feeding of glucose during the induction phase of methylotrophic yeast Pichia pastoris. Kim JS; Ri US; Ri JS; Jo CM; Kim CJ; Yun UH; Ri Hyon-Gwang Braz J Microbiol; 2024 Sep; 55(3):2107-2117. PubMed ID: 38777992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]