BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18371729)

  • 1. The use of microspectrofluorimetry for the characterization of lake pigments.
    Claro A; Melo MJ; Schäfer S; de Melo JS; Pina F; van den Berg KJ; Burnstock A
    Talanta; 2008 Jan; 74(4):922-9. PubMed ID: 18371729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bright light: microspectrofluorimetry for the characterization of lake pigments and dyes in works of art.
    Melo MJ; Claro A
    Acc Chem Res; 2010 Jun; 43(6):857-66. PubMed ID: 20446690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced Raman spectroscopy studies of yellow organic dyestuffs and lake pigments in oil paint.
    Mayhew HE; Fabian DM; Svoboda SA; Wustholz KL
    Analyst; 2013 Aug; 138(16):4493-9. PubMed ID: 23722232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photophysical properties of alizarin and purpurin Al(III) complexes in solution and in solid state.
    Grazia C; Clementi C; Miliani C; Romani A
    Photochem Photobiol Sci; 2011 Jul; 10(7):1249-54. PubMed ID: 21552598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A spectroscopic study of Brazilwood paints in medieval books of hours.
    Melo MJ; Otero V; Vitorino T; Araújo R; Muralha VS; Lemos A; Picollo M
    Appl Spectrosc; 2014; 68(4):434-43. PubMed ID: 24694700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ identification and analysis of automotive paint pigments using line segment excitation Raman spectroscopy: I. Inorganic topcoat pigments.
    Suzuki EM; Carrabba M
    J Forensic Sci; 2001 Sep; 46(5):1053-69. PubMed ID: 11569543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared luminescence of cadmium pigments: in situ identification and mapping in paintings.
    Thoury M; Delaney JK; Rie ER; Palmer M; Morales K; Krueger J
    Appl Spectrosc; 2011 Aug; 65(8):939-51. PubMed ID: 21819784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic Differentiation and Microscopic Imaging of Red Organic Pigments Using Optical Pump-Probe Contrast.
    Yu J; Warren WS; Fischer MC
    Anal Chem; 2018 Nov; 90(21):12686-12691. PubMed ID: 30350615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman identification of yellow synthetic organic pigments in modern and contemporary paintings: reference spectra and case studies.
    Ropret P; Centeno SA; Bukovec P
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):486-97. PubMed ID: 17590389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the Kubelka-Munk correction for self-absorption of fluorescence emission in carmine lake paint layers.
    Clementi C; Miliani C; Verri G; Sotiropoulou S; Romani A; Brunetti BG; Sgamellotti A
    Appl Spectrosc; 2009 Dec; 63(12):1323-30. PubMed ID: 20030975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation techniques for the analysis of artists' acrylic emulsion paints.
    Scalarone D; Chiantore O
    J Sep Sci; 2004 Mar; 27(4):263-74. PubMed ID: 15334913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of modern oil paints through a physico-chemical integrated approach. Emblematic cases from Valencia, Spain.
    Caravá S; Roldán García C; Vázquez de Agredos-Pascual ML; Murcia Mascarós S; Izzo FC
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Oct; 240():118633. PubMed ID: 32599479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Fluorescence Imaging Spectroscopy for Mapping Low Concentrations of Red Lake Pigments: Van Gogh's Painting The Olive Orchard.
    Dooley KA; Chieli A; Romani A; Legrand S; Miliani C; Janssens K; Delaney JK
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):6046-6053. PubMed ID: 31961988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATR-FT-IR spectroscopy in the region of 500-230 cm(-1) for identification of inorganic red pigments.
    Vahur S; Knuutinen U; Leito I
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(4):764-71. PubMed ID: 19409839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-enhanced Raman spectroscopy: a direct method to identify colorants in various artist media.
    Brosseau CL; Rayner KS; Casadio F; Grzywacz CM; Van Duyne RP
    Anal Chem; 2009 Sep; 81(17):7443-7. PubMed ID: 19637904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-technique characterisation of commercial alizarin-based lakes.
    Pronti L; Mazzitelli JB; Bracciale MP; Massini Rosati L; Vieillescazes C; Santarelli ML; Felici AC
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jul; 200():10-19. PubMed ID: 29660677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical fingerprinting of ready-mixed house paints of relevance to artistic production in the first half of the twentieth century. Part I: Inorganic and organic pigments.
    Gautier G; Bezur A; Muir K; Casadio F; Fiedler I
    Appl Spectrosc; 2009 Jun; 63(6):597-603. PubMed ID: 19531286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of sample treatment for the identification of anthraquinone dyes by surface-enhanced Raman spectroscopy.
    Marcaida I; Maguregui M; Morillas H; García-Florentino C; Pintus V; Aguayo T; Campos-Vallette M; Madariaga JM
    Anal Bioanal Chem; 2017 Mar; 409(8):2221-2228. PubMed ID: 28084510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The efficiency of micro-Raman spectroscopy in the analysis of complicated mixtures in modern paints: Munch's and Kupka's paintings under study.
    Košařová V; Hradil D; Hradilová J; Čermáková Z; Němec I; Schreiner M
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 156():36-46. PubMed ID: 26641284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct identification of various copper phthalocyanine pigments in automotive paints and paint smears by laser desorption ionization mass spectrometry.
    Mukai T; Nakazumi H; Kawabata S; Kusatani M; Nakai S; Honda S
    J Forensic Sci; 2008 Jan; 53(1):107-15. PubMed ID: 18279247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.