These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

766 related articles for article (PubMed ID: 18371930)

  • 1. Walking the interactome for prioritization of candidate disease genes.
    Köhler S; Bauer S; Horn D; Robinson PN
    Am J Hum Genet; 2008 Apr; 82(4):949-58. PubMed ID: 18371930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speeding disease gene discovery by sequence based candidate prioritization.
    Adie EA; Adams RR; Evans KL; Porteous DJ; Pickard BS
    BMC Bioinformatics; 2005 Mar; 6():55. PubMed ID: 15766383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Update of the G2D tool for prioritization of gene candidates to inherited diseases.
    Perez-Iratxeta C; Bork P; Andrade-Navarro MA
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W212-6. PubMed ID: 17478516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenolyzer: phenotype-based prioritization of candidate genes for human diseases.
    Yang H; Robinson PN; Wang K
    Nat Methods; 2015 Sep; 12(9):841-3. PubMed ID: 26192085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the robustness of network-based disease-gene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes.
    Guney E; Oliva B
    PLoS One; 2014; 9(4):e94686. PubMed ID: 24733074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes.
    Franke L; van Bakel H; Fokkens L; de Jong ED; Egmont-Petersen M; Wijmenga C
    Am J Hum Genet; 2006 Jun; 78(6):1011-25. PubMed ID: 16685651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Systematic genome-wide approach to positional candidate cloning for identification of novel human disease genes].
    Hasegawa Y
    Tanpakushitsu Kakusan Koso; 2004 Dec; 49(17 Suppl):2894-901. PubMed ID: 15669273
    [No Abstract]   [Full Text] [Related]  

  • 8. Limits of resolution of genetic linkage studies: implications for the positional cloning of human disease genes.
    Boehnke M
    Am J Hum Genet; 1994 Aug; 55(2):379-90. PubMed ID: 8037215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving disease gene prioritization using the semantic similarity of Gene Ontology terms.
    Schlicker A; Lengauer T; Albrecht M
    Bioinformatics; 2010 Sep; 26(18):i561-7. PubMed ID: 20823322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degree-adjusted algorithm for prioritisation of candidate disease genes from gene expression and protein interactome.
    Wang Y; Fang H; Yang T; Wu D; Zhao J
    IET Syst Biol; 2014 Apr; 8(2):41-6. PubMed ID: 25014224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TOM: a web-based integrated approach for identification of candidate disease genes.
    Rossi S; Masotti D; Nardini C; Bonora E; Romeo G; Macii E; Benini L; Volinia S
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W285-92. PubMed ID: 16845011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TOM: enhancement and extension of a tool suite for in silico approaches to multigenic hereditary disorders.
    Masotti D; Nardini C; Rossi S; Bonora E; Romeo G; Volinia S; Benini L
    Bioinformatics; 2008 Feb; 24(3):428-9. PubMed ID: 18048394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CANDID: a flexible method for prioritizing candidate genes for complex human traits.
    Hutz JE; Kraja AT; McLeod HL; Province MA
    Genet Epidemiol; 2008 Dec; 32(8):779-90. PubMed ID: 18613097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Searching for candidate genes in the new millennium.
    Bleck O; McGrath JA; South AP
    Clin Exp Dermatol; 2001 May; 26(3):279-83. PubMed ID: 11422176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global risk transformative prioritization for prostate cancer candidate genes in molecular networks.
    Chen L; Tai J; Zhang L; Shang Y; Li X; Qu X; Li W; Miao Z; Jia X; Wang H; Li W; He W
    Mol Biosyst; 2011 Sep; 7(9):2547-53. PubMed ID: 21735017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic-linkage mapping of complex hereditary disorders to a whole-genome molecular-interaction network.
    Iossifov I; Zheng T; Baron M; Gilliam TC; Rzhetsky A
    Genome Res; 2008 Jul; 18(7):1150-62. PubMed ID: 18417725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new web-based data mining tool for the identification of candidate genes for human genetic disorders.
    van Driel MA; Cuelenaere K; Kemmeren PP; Leunissen JA; Brunner HG
    Eur J Hum Genet; 2003 Jan; 11(1):57-63. PubMed ID: 12529706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GPEC: a Cytoscape plug-in for random walk-based gene prioritization and biomedical evidence collection.
    Le DH; Kwon YK
    Comput Biol Chem; 2012 Apr; 37():17-23. PubMed ID: 22430954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal ascertainment strategies to detect linkage to common disease alleles.
    Baron M
    Am J Hum Genet; 1999 Apr; 64(4):1243-8. PubMed ID: 10090916
    [No Abstract]   [Full Text] [Related]  

  • 20. Syndrome to gene (S2G): in-silico identification of candidate genes for human diseases.
    Gefen A; Cohen R; Birk OS
    Hum Mutat; 2010 Mar; 31(3):229-36. PubMed ID: 20052752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.