These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 18372094)

  • 1. Influence of membrane potentials upon reversible protonation of acidic residues from the OmpF eyelet.
    Asandei A; Mereuta L; Luchian T
    Biophys Chem; 2008 Jun; 135(1-3):32-40. PubMed ID: 18372094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the membrane potential on the protonation of bacteriorhodopsin: insights from electrostatic calculations into the regulation of proton pumping.
    Bombarda E; Becker T; Ullmann GM
    J Am Chem Soc; 2006 Sep; 128(37):12129-39. PubMed ID: 16967962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of dipole potential variations on the surface charge potential of lipid membranes.
    Lairion F; Disalvo EA
    J Phys Chem B; 2009 Feb; 113(6):1607-14. PubMed ID: 19193165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation alters the pH-dependent active state equilibrium of rhodopsin by modulating the membrane surface potential.
    Gibson SK; Parkes JH; Liebman PA
    Biochemistry; 1999 Aug; 38(34):11103-14. PubMed ID: 10460166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of a transmembrane pH gradient on protonation probabilities of bacteriorhodopsin: the structural basis of the back-pressure effect.
    Calimet N; Ullmann GM
    J Mol Biol; 2004 Jun; 339(3):571-89. PubMed ID: 15147843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acid-base equilibria in rhodopsin: dependence of the protonation state of glu134 on its environment.
    Periole X; Ceruso MA; Mehler EL
    Biochemistry; 2004 Jun; 43(22):6858-64. PubMed ID: 15170322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic properties and macroscopic electrodiffusion in OmpF porin and mutants.
    Aguilella-Arzo M; García-Celma JJ; Cervera J; Alcaraz A; Aguilella VM
    Bioelectrochemistry; 2007 May; 70(2):320-7. PubMed ID: 16769257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beta-lactam screening by specific residues of the OmpF eyelet.
    Vidal S; Bredin J; Pagès JM; Barbe J
    J Med Chem; 2005 Mar; 48(5):1395-400. PubMed ID: 15743183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionization states of residues in OmpF and mutants: effects of dielectric constant and interactions between residues.
    Varma S; Jakobsson E
    Biophys J; 2004 Feb; 86(2):690-704. PubMed ID: 14747308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of two polyamine toxins on the bacterial porin OmpF.
    Baslé A; Delcour AH
    Biochem Biophys Res Commun; 2001 Jul; 285(2):550-4. PubMed ID: 11444879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of a polar molecule with an ion channel.
    Levadny V; Aguilella VM; Aguilella-Arzo M; Belaya M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041912. PubMed ID: 15600440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased salt concentration promotes competitive block of OmpF channel by protons.
    Alcaraz A; Queralt-Martín M; García-Giménez E; Aguilella VM
    Biochim Biophys Acta; 2012 Nov; 1818(11):2777-82. PubMed ID: 22789813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entropy-enthalpy compensation at the single protein level: pH sensing in the bacterial channel OmpF.
    Alcaraz A; Queralt-Martín M; Verdiá-Báguena C; Aguilella VM; Mafé S
    Nanoscale; 2014 Dec; 6(24):15210-5. PubMed ID: 25375963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-protein binding is often associated with changes in protonation state.
    Mason AC; Jensen JH
    Proteins; 2008 Apr; 71(1):81-91. PubMed ID: 17932920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residue ionization and ion transport through OmpF channels.
    Nestorovich EM; Rostovtseva TK; Bezrukov SM
    Biophys J; 2003 Dec; 85(6):3718-29. PubMed ID: 14645063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Membrane proton conductivity and energy-dependent fluxes of hydrogen ions in bacteria Enterococcus hirae grown in media with different pH values].
    Biofizika; 2005; 50(4):680-3. PubMed ID: 16212060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of amino acid protonation states on molecular dynamics simulations of the bacterial porin OmpF.
    Varma S; Chiu SW; Jakobsson E
    Biophys J; 2006 Jan; 90(1):112-23. PubMed ID: 16183883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule investigation of the interactions between reconstituted planar lipid membranes and an analogue of the HP(2-20) antimicrobial peptide.
    Mereuta L; Luchian T; Park Y; Hahm KS
    Biochem Biophys Res Commun; 2008 Sep; 373(4):467-72. PubMed ID: 18433718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AC conductance of transmembrane protein channels. The number of ionized residue mobile counterions at infinite dilution.
    Ervin EN; White RJ; Owens TG; Tang JM; White HS
    J Phys Chem B; 2007 Aug; 111(30):9165-71. PubMed ID: 17602583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impedance spectroscopy of OmpF porin reconstituted into a mercury-supported lipid bilayer.
    Becucci L; Moncelli MR; Guidelli R
    Langmuir; 2006 Jan; 22(3):1341-6. PubMed ID: 16430303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.