These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 1837219)

  • 41. The effect of dark-rearing on dendritic development in two regions of the forebrain of the domestic chick.
    Galal KM; Bradley PM; Drummond P
    Brain Res Dev Brain Res; 1990 Apr; 53(1):135-8. PubMed ID: 2350880
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Expression of the GABA(A) receptor gamma 4-subunit gene: anatomical distribution of the corresponding mRNA in the domestic chick forebrain and the effect of imprinting training.
    Harvey RJ; McCabe BJ; Solomonia RO; Horn G; Darlison MG
    Eur J Neurosci; 1998 Sep; 10(9):3024-8. PubMed ID: 9758173
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Imprinting, learning, and memory.
    Horn G
    Behav Neurosci; 1986 Dec; 100(6):825-32. PubMed ID: 3545258
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of differential gene expression supports a role for amyloid precursor protein and a protein kinase C substrate (MARCKS) in long-term memory.
    Solomonia RO; Morgan K; Kotorashvili A; McCabe BJ; Jackson AP; Horn G
    Eur J Neurosci; 2003 Mar; 17(5):1073-81. PubMed ID: 12653983
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Archistriatal lesions impair the acquisition of filial preferences during imprinting in the domestic chick.
    Lowndes M; Davies DC; Johnson MH
    Eur J Neurosci; 1994 Jul; 6(7):1143-8. PubMed ID: 7952295
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Visual imprinting and the neural mechanisms of recognition memory.
    Horn G
    Trends Neurosci; 1998 Jul; 21(7):300-5. PubMed ID: 9683322
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Noradrenaline and learning: effects of the noradrenergic neurotoxin DSP4 on imprinting in the domestic chick.
    Davies DC; Horn G; McCabe BJ
    Behav Neurosci; 1985 Aug; 99(4):652-60. PubMed ID: 3843732
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Amino acid release from the intermediate medial hyperstriatum ventrale (IMHV) of day-old chicks following a one-trial passive avoidance task.
    Daisley JN; Rose SP
    Neurobiol Learn Mem; 2002 Mar; 77(2):185-201. PubMed ID: 11848718
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 7-Chlorokynurenate, an antagonist of the glycine binding site on the NMDA receptor, inhibits memory formation in day-old chicks (Gallus domesticus).
    Steele RJ; Stewart MG
    Behav Neural Biol; 1993 Sep; 60(2):89-92. PubMed ID: 8117242
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neural mechanisms of learning: an analysis of imprinting in the domestic chick.
    Horn G
    Proc R Soc Lond B Biol Sci; 1981 Oct; 213(1191):101-37. PubMed ID: 6173880
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pre- and post-training lesions of the intermediate medial hyperstriatum ventrale and passive avoidance learning in the chick.
    Patterson TA; Gilbert DB; Rose SP
    Exp Brain Res; 1990; 80(1):189-95. PubMed ID: 2358026
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Organization of the dorsocaudal neostriatal complex: a retrograde and anterograde tracing study in the domestic chick with special emphasis on pathways relevant to imprinting.
    Metzger M; Jiang S; Braun K
    J Comp Neurol; 1998 Jun; 395(3):380-404. PubMed ID: 9596530
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hemispheric asymmetry of synapses in chick medial hyperstriatum ventrale following passive avoidance training: a stereological investigation.
    Stewart MG; Rose SP; King TS; Gabbott PL; Bourne R
    Brain Res; 1984 Feb; 314(2):261-9. PubMed ID: 6704752
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Low-threshold N-methyl-D-aspartate receptor function correlates negatively with learning.
    Bradley PM; Burns BD; Webb AC
    Brain Res; 2001 May; 900(1):38-47. PubMed ID: 11325344
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effects of hyperstriatal lesions on one-trial passive-avoidance learning in the chick.
    Davies DC; Taylor DA; Johnson MH
    J Neurosci; 1988 Dec; 8(12):4662-6. PubMed ID: 3199200
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic activity in the hyperstriatum of 2-day-old chicks during optomotor and contrasting visual stimulation.
    Bell GA; Rogers LJ
    Behav Brain Res; 1992 Sep; 50(1-2):177-83. PubMed ID: 1449645
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Changes in metabolic activity in the hyperstriatum of the chick before and after hatching.
    Rogers LJ; Bell GA
    Int J Dev Neurosci; 1994 Oct; 12(6):557-66. PubMed ID: 7892785
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dissociation of recognition memory and associative learning by a restricted lesion of the chick forebrain.
    Johnson MH; Horn G
    Neuropsychologia; 1986; 24(3):329-40. PubMed ID: 3736815
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Learning selectively increases protein kinase C substrate phosphorylation in specific regions of the chick brain.
    Sheu FS; McCabe BJ; Horn G; Routtenberg A
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2705-9. PubMed ID: 8464879
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effects of age and visual experience on potentiation of responses in slices from the chick forebrain.
    Bradley PM; Burns BD; Webb AC
    Proc Biol Sci; 1991 Jan; 243(1306):25-30. PubMed ID: 1673242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.