BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 18372204)

  • 1. Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact.
    Luttik MA; Vuralhan Z; Suir E; Braus GH; Pronk JT; Daran JM
    Metab Eng; 2008; 10(3-4):141-53. PubMed ID: 18372204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.
    Rodriguez A; Kildegaard KR; Li M; Borodina I; Nielsen J
    Metab Eng; 2015 Sep; 31():181-8. PubMed ID: 26292030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ARO4 gene of Candida albicans encodes a tyrosine-sensitive DAHP synthase: evolution, functional conservation and phenotype of Aro3p-, Aro4p-deficient mutants.
    Sousa S; McLaughlin MM; Pereira SA; VanHorn S; Knowlton R; Brown JR; Nicholas RO; Livi GP
    Microbiology (Reading); 2002 May; 148(Pt 5):1291-1303. PubMed ID: 11988503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning, primary structure and regulation of the ARO4 gene, encoding the tyrosine-inhibited 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Saccharomyces cerevisiae.
    Künzler M; Paravicini G; Egli CM; Irniger S; Braus GH
    Gene; 1992 Apr; 113(1):67-74. PubMed ID: 1348717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
    Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ
    Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coevolution of transcriptional and allosteric regulation at the chorismate metabolic branch point of Saccharomyces cerevisiae.
    Krappmann S; Lipscomb WN; Braus GH
    Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13585-90. PubMed ID: 11095720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase-encoding genes in the yeast Saccharomyces cerevisiae.
    Helmstaedt K; Strittmatter A; Lipscomb WN; Braus GH
    Proc Natl Acad Sci U S A; 2005 Jul; 102(28):9784-9. PubMed ID: 15987779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.
    Koopman F; Beekwilder J; Crimi B; van Houwelingen A; Hall RD; Bosch D; van Maris AJ; Pronk JT; Daran JM
    Microb Cell Fact; 2012 Dec; 11():155. PubMed ID: 23216753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae.
    Averesch NJ; Winter G; Krömer JO
    Microb Cell Fact; 2016 May; 15():89. PubMed ID: 27230236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mutated ARO4 gene for feedback-resistant DAHP synthase which causes both o-fluoro-DL-phenylalanine resistance and beta-phenethyl-alcohol overproduction in Saccharomyces cerevisiae.
    Fukuda K; Watanabe M; Asano K; Ouchi K; Takasawa S
    Curr Genet; 1991 Dec; 20(6):453-6. PubMed ID: 1723662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae.
    Li M; Kildegaard KR; Chen Y; Rodriguez A; Borodina I; Nielsen J
    Metab Eng; 2015 Nov; 32():1-11. PubMed ID: 26344106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of the Saccharomyces cerevisiae ARO8 gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose.
    Romagnoli G; Knijnenburg TA; Liti G; Louis EJ; Pronk JT; Daran JM
    Yeast; 2015 Jan; 32(1):29-45. PubMed ID: 24733517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the l-tyrosine metabolic pathway in
    Li Y; Mao J; Song X; Wu Y; Cai M; Wang H; Liu Q; Zhang X; Bai Y; Xu H; Qiao M
    3 Biotech; 2020 Jun; 10(6):258. PubMed ID: 32550099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors.
    Suástegui M; Yu Ng C; Chowdhury A; Sun W; Cao M; House E; Maranas CD; Shao Z
    Metab Eng; 2017 Jul; 42():134-144. PubMed ID: 28625755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of hydroxymandelate synthases and the aromatic amino acid pathway enables de novo biosynthesis of mandelic and 4-hydroxymandelic acid with Saccharomyces cerevisiae.
    Reifenrath M; Boles E
    Metab Eng; 2018 Jan; 45():246-254. PubMed ID: 29330068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway.
    Oldiges M; Kunze M; Degenring D; Sprenger GA; Takors R
    Biotechnol Prog; 2004; 20(6):1623-33. PubMed ID: 15575692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connecting central carbon and aromatic amino acid metabolisms to improve de novo 2-phenylethanol production in Saccharomyces cerevisiae.
    Hassing EJ; de Groot PA; Marquenie VR; Pronk JT; Daran JG
    Metab Eng; 2019 Dec; 56():165-180. PubMed ID: 31574317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reciprocal allostery arising from a bienzyme assembly controls aromatic amino acid biosynthesis in Prevotella nigrescens.
    Bai Y; Parker EJ
    J Biol Chem; 2021 Sep; 297(3):101038. PubMed ID: 34343567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of chorismate mutase in Saccharomyces cerevisiae.
    Brown JF; Dawes IW
    Mol Gen Genet; 1990 Jan; 220(2):283-8. PubMed ID: 2183005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DhARO4, an amino acid biosynthetic gene, is stimulated by high salinity in Debaryomyces hansenii.
    Calderón-Torres M; Peña A; Thomé PE
    Yeast; 2006 Jul; 23(10):725-34. PubMed ID: 16862599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.