BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 18372305)

  • 21. Changes in contractile properties of skinned single rat soleus and diaphragm fibres after chronic hypoxia.
    Degens H; Bosutti A; Gilliver SF; Slevin M; van Heijst A; Wüst RC
    Pflugers Arch; 2010 Oct; 460(5):863-73. PubMed ID: 20697736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Levosimendan enhances force generation of diaphragm muscle from patients with chronic obstructive pulmonary disease.
    van Hees HW; Dekhuijzen PN; Heunks LM
    Am J Respir Crit Care Med; 2009 Jan; 179(1):41-7. PubMed ID: 18990676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy cost of isometric force production after active shortening in skinned muscle fibres.
    Joumaa V; Fitzowich A; Herzog W
    J Exp Biol; 2017 Apr; 220(Pt 8):1509-1515. PubMed ID: 28232399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscle fibre type shifting in the vastus lateralis of patients with COPD is associated with disease severity: a systematic review and meta-analysis.
    Gosker HR; Zeegers MP; Wouters EF; Schols AM
    Thorax; 2007 Nov; 62(11):944-9. PubMed ID: 17526675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Residual force enhancement and force depression in human single muscle fibres.
    Pinnell RAM; Mashouri P; Mazara N; Weersink E; Brown SHM; Power GA
    J Biomech; 2019 Jun; 91():164-169. PubMed ID: 31155213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dependence of cross-bridge kinetics on myosin light chain isoforms in rabbit and rat skeletal muscle fibres.
    Andruchov O; Andruchova O; Wang Y; Galler S
    J Physiol; 2006 Feb; 571(Pt 1):231-42. PubMed ID: 16357018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptation of the diaphragm and the vastus lateralis in mild-to-moderate COPD.
    Doucet M; Debigaré R; Joanisse DR; Côté C; Leblanc P; Grégoire J; Deslauriers J; Vaillancourt R; Maltais F
    Eur Respir J; 2004 Dec; 24(6):971-9. PubMed ID: 15572541
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of elevated H
    Sundberg CW; Hunter SK; Trappe SW; Smith CS; Fitts RH
    J Physiol; 2018 Sep; 596(17):3993-4015. PubMed ID: 29806714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Abnormal skeletal muscle blood flow, contractile mechanics and fibre morphology in a rat model of obese-HFpEF.
    Espino-Gonzalez E; Tickle PG; Benson AP; Kissane RWP; Askew GN; Egginton S; Bowen TS
    J Physiol; 2021 Feb; 599(3):981-1001. PubMed ID: 33347612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endurance training effects on the contractile activation characteristics of single muscle fibres from the rat diaphragm.
    Lynch GS; Duncan ND; Campbell SP; Williams DA
    Clin Exp Pharmacol Physiol; 1995; 22(6-7):430-7. PubMed ID: 8582094
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stretch activation, unloaded shortening velocity, and myosin heavy chain isoforms of rat skeletal muscle fibres.
    Galler S; Schmitt TL; Pette D
    J Physiol; 1994 Aug; 478 Pt 3(Pt 3):513-21. PubMed ID: 7965861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endoplasmic reticulum stress and unfolded protein response in diaphragm muscle dysfunction of patients with stable chronic obstructive pulmonary disease.
    Barreiro E; Salazar-Degracia A; Sancho-Muñoz A; Aguiló R; Rodríguez-Fuster A; Gea J
    J Appl Physiol (1985); 2019 Jun; 126(6):1572-1586. PubMed ID: 30998124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subcellular adaptation of the human diaphragm in chronic obstructive pulmonary disease.
    Orozco-Levi M; Gea J; Lloreta JL; Félez M; Minguella J; Serrano S; Broquetas JM
    Eur Respir J; 1999 Feb; 13(2):371-8. PubMed ID: 10065684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contractile properties in single muscle fibres from chronically overused motor units in relation to motoneuron firing properties in prior polio patients.
    Larsson L; Li X; Tollbäck A; Grimby L
    J Neurol Sci; 1995 Oct; 132(2):182-92. PubMed ID: 8543946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Depression of force production and ATPase activity in different types of human skeletal muscle fibers from patients with chronic heart failure.
    Szentesi P; Bekedam MA; van Beek-Harmsen BJ; van der Laarse WJ; Zaremba R; Boonstra A; Visser FC; Stienen GJ
    J Appl Physiol (1985); 2005 Dec; 99(6):2189-95. PubMed ID: 16051711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contractile properties and protein isoforms of single fibres from the chicken pectoralis red strip muscle.
    Reiser PJ; Greaser ML; Moss RL
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):553-62. PubMed ID: 8782116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diaphragm efficiency estimated as power output relative to activation in chronic obstructive pulmonary disease.
    Finucane KE; Singh B
    J Appl Physiol (1985); 2012 Nov; 113(10):1567-75. PubMed ID: 22995393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Skeletal muscle fibre-type shifting and metabolic profile in patients with chronic obstructive pulmonary disease.
    Gosker HR; van Mameren H; van Dijk PJ; Engelen MP; van der Vusse GJ; Wouters EF; Schols AM
    Eur Respir J; 2002 Apr; 19(4):617-25. PubMed ID: 11998989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Severe COPD Alters Muscle Fiber Conduction Velocity During Knee Extensors Fatiguing Contraction.
    Boccia G; Coratella G; Dardanello D; Rinaldo N; Lanza M; Schena F; Rainoldi A
    COPD; 2016 Oct; 13(5):583-8. PubMed ID: 27007486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ATP utilization for calcium uptake and force production in different types of human skeletal muscle fibres.
    Szentesi P; Zaremba R; van Mechelen W; Stienen GJ
    J Physiol; 2001 Mar; 531(Pt 2):393-403. PubMed ID: 11230512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.