These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 18372715)

  • 1. How does microgravity affect the muscular and kinematic synergies in a complex movement?
    Casellato C; Tagliabue M; Pedrocchi A; Ferrigno G; Pozzo T
    J Gravit Physiol; 2007 Jul; 14(1):P93-4. PubMed ID: 18372715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole body pointing movements in transient microgravity: preliminary results.
    Tagliabue M; Pedrocchi A; Gower V; Ferrigno G; Pozzo T
    J Gravit Physiol; 2004 Jul; 11(2):P39-40. PubMed ID: 16231449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning of a basic coordination pattern constructs straight-ahead and curved walking in humans.
    Courtine G; Schieppati M
    J Neurophysiol; 2004 Apr; 91(4):1524-35. PubMed ID: 14668296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity.
    Papaxanthis C; Pozzo T; McIntyre J
    Neuroscience; 2005; 135(2):371-83. PubMed ID: 16125854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of phasic and tonic muscle synergies with reaching direction and speed.
    d'Avella A; Fernandez L; Portone A; Lacquaniti F
    J Neurophysiol; 2008 Sep; 100(3):1433-54. PubMed ID: 18596190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Body orientation and regulation of the center of gravity during movement under water.
    Massion J; Fabre JC; Mouchnino L; Obadia A
    J Vestib Res; 1995; 5(3):211-21. PubMed ID: 7627380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal modulations of agonist and antagonist muscle activities accompanying improved performance of ballistic movements.
    Liang N; Yamashita T; Ni Z; Takahashi M; Murakami T; Yahagi S; Kasai T
    Hum Mov Sci; 2008 Feb; 27(1):12-28. PubMed ID: 17936390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse dynamic investigation of voluntary leg lateral movements in weightlessness: a new microgravity-specific strategy.
    Pedrocchi A; Baroni G; Pedotti A; Massion J; Ferrigno G
    J Biomech; 2005 Apr; 38(4):769-77. PubMed ID: 15713298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscular synergies during motor corrections: investigation of the latencies of muscle activities.
    Fautrelle L; Ballay Y; Bonnetblanc F
    Behav Brain Res; 2010 Dec; 214(2):428-36. PubMed ID: 20600349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axial synergies under microgravity conditions.
    Massion J; Gurfinkel V; Lipshits M; Obadia A; Popov K
    J Vestib Res; 1993; 3(3):275-87. PubMed ID: 8275262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromyographic activity in the Rhesus monkey forelimb muscles during a goal directed movement and locomotion before, during and after spaceflight.
    Canu MH; Kozlovskaya IB; Falempin M
    J Gravit Physiol; 2003 Dec; 10(2):19-28. PubMed ID: 15838974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of neuromuscular synergies in natural upper-arm movements.
    Sabatini AM
    Biol Cybern; 2002 Apr; 86(4):253-62. PubMed ID: 11956806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tri-dimensional and triphasic muscle organization of whole-body pointing movements.
    Chiovetto E; Berret B; Pozzo T
    Neuroscience; 2010 Nov; 170(4):1223-38. PubMed ID: 20633612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of microgravity on the electromyographic activity of two upperlimb muscles during a goal-directed movement and during locomotion.
    Falempin M; Canu MH; Langlet C; Kozlovskaya IB
    J Gravit Physiol; 2000 Jan; 7(1):S69-70. PubMed ID: 11543465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic synergy adaptation to microgravity during forward trunk movement.
    Vernazza-Martin S; Martin N; Massion J
    J Neurophysiol; 2000 Jan; 83(1):453-64. PubMed ID: 10634887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor control programs and walking.
    Ivanenko YP; Poppele RE; Lacquaniti F
    Neuroscientist; 2006 Aug; 12(4):339-48. PubMed ID: 16840710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor coordination in weightless conditions revealed by long-term microgravity adaptation.
    Baroni G; Pedrocchi A; Ferrigno G; Massion J; Pedotti A
    Acta Astronaut; 2001; 49(3-10):199-213. PubMed ID: 11669110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Biomechanical and physiological substantiation for application of functional muscle electrostimulation in performing rhythmic movements on bicycle ergometer].
    Petrushanskaia KA; Vitenzon AS; Gritsenko GP; Sutchenkov IA
    Vopr Kurortol Fizioter Lech Fiz Kult; 2004; (2):8-11. PubMed ID: 15154343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bilateral motor unit synchronization of leg muscles during a simple dynamic balance task.
    Boonstra TW; Daffertshofer A; Roerdink M; Flipse I; Groenewoud K; Beek PJ
    Eur J Neurosci; 2009 Feb; 29(3):613-22. PubMed ID: 19175407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pointing arm movements in short- and long-term spaceflights.
    Berger M; Mescheriakov S; Molokanova E; Lechner-Steinleitner S; Seguer N; Kozlovskaya I
    Aviat Space Environ Med; 1997 Sep; 68(9):781-7. PubMed ID: 9293345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.