These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 18373191)
1. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Casey T; Bond J; Tighe S; Hunter T; Lintault L; Patel O; Eneman J; Crocker A; White J; Tessitore J; Stanley M; Harlow S; Weaver D; Muss H; Plaut K Breast Cancer Res Treat; 2009 Mar; 114(1):47-62. PubMed ID: 18373191 [TBL] [Abstract][Full Text] [Related]
2. The urokinase-system in tumor tissue stroma of the breast and breast cancer cell invasion. Hildenbrand R; Schaaf A Int J Oncol; 2009 Jan; 34(1):15-23. PubMed ID: 19082473 [TBL] [Abstract][Full Text] [Related]
3. The desmoplastic response to infiltrating breast carcinoma: gene expression at the site of primary invasion and implications for comparisons between tumor types. Iacobuzio-Donahue CA; Argani P; Hempen PM; Jones J; Kern SE Cancer Res; 2002 Sep; 62(18):5351-7. PubMed ID: 12235006 [TBL] [Abstract][Full Text] [Related]
4. Podoplanin expression identified in stromal fibroblasts as a favorable prognostic marker in patients with colorectal carcinoma. Yamanashi T; Nakanishi Y; Fujii G; Akishima-Fukasawa Y; Moriya Y; Kanai Y; Watanabe M; Hirohashi S Oncology; 2009; 77(1):53-62. PubMed ID: 19556810 [TBL] [Abstract][Full Text] [Related]
5. The multifunctional role of the immunohistochemical expression of MMP-7 in invasive breast cancer. Mylona E; Kapranou A; Mavrommatis J; Markaki S; Keramopoulos A; Nakopoulou L APMIS; 2005 Apr; 113(4):246-55. PubMed ID: 15865605 [TBL] [Abstract][Full Text] [Related]
6. Identification of gene signatures for invasive colorectal tumor cells. Wiese AH; Auer J; Lassmann S; Nährig J; Rosenberg R; Höfler H; Rüger R; Werner M Cancer Detect Prev; 2007; 31(4):282-95. PubMed ID: 17936523 [TBL] [Abstract][Full Text] [Related]
7. Differential gene expression profile in breast cancer-derived stromal fibroblasts. Singer CF; Gschwantler-Kaulich D; Fink-Retter A; Haas C; Hudelist G; Czerwenka K; Kubista E Breast Cancer Res Treat; 2008 Jul; 110(2):273-81. PubMed ID: 17899370 [TBL] [Abstract][Full Text] [Related]
8. Focal degeneration of aged or injured myoepithelial cells and the resultant auto-immunoreactions are trigger factors for breast tumor invasion. Man YG Med Hypotheses; 2007; 69(6):1340-57. PubMed ID: 17493765 [TBL] [Abstract][Full Text] [Related]
9. A mouse stromal response to tumor invasion predicts prostate and breast cancer patient survival. Bacac M; Provero P; Mayran N; Stehle JC; Fusco C; Stamenkovic I PLoS One; 2006 Dec; 1(1):e32. PubMed ID: 17183660 [TBL] [Abstract][Full Text] [Related]
10. Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: implications for tumor development and progression. Shekhar MP; Werdell J; Santner SJ; Pauley RJ; Tait L Cancer Res; 2001 Feb; 61(4):1320-6. PubMed ID: 11245428 [TBL] [Abstract][Full Text] [Related]
11. Identification of EPSTI1, a novel gene induced by epithelial-stromal interaction in human breast cancer. Nielsen HL; Rønnov-Jessen L; Villadsen R; Petersen OW Genomics; 2002 May; 79(5):703-10. PubMed ID: 11991720 [TBL] [Abstract][Full Text] [Related]
12. Modeling the cholesteatoma microenvironment: coculture of HaCaT keratinocytes with WS1 fibroblasts induces MMP-2 activation, invasive phenotype, and proteolysis of the extracellular matrix. Laeeq S; Faust R Laryngoscope; 2007 Feb; 117(2):313-8. PubMed ID: 17204986 [TBL] [Abstract][Full Text] [Related]
13. Claudin-16 reduces the aggressive behavior of human breast cancer cells. Martin TA; Harrison GM; Watkins G; Jiang WG J Cell Biochem; 2008 Sep; 105(1):41-52. PubMed ID: 18442037 [TBL] [Abstract][Full Text] [Related]
14. Role of CCL5 in invasion, proliferation and proportion of CD44+/CD24- phenotype of MCF-7 cells and correlation of CCL5 and CCR5 expression with breast cancer progression. Zhang Y; Yao F; Yao X; Yi C; Tan C; Wei L; Sun S Oncol Rep; 2009 Apr; 21(4):1113-21. PubMed ID: 19288016 [TBL] [Abstract][Full Text] [Related]
15. Transforming growth factor-beta1 regulation of ATF-3 and identification of ATF-3 target genes in breast cancer cells. Kwok S; Rittling SR; Partridge NC; Benson CS; Thiyagaraj M; Srinivasan N; Selvamurugan N J Cell Biochem; 2009 Oct; 108(2):408-14. PubMed ID: 19582787 [TBL] [Abstract][Full Text] [Related]
16. Gene expression profiling of normal human pulmonary fibroblasts following coculture with non-small-cell lung cancer cells reveals alterations related to matrix degradation, angiogenesis, cell growth and survival. Fromigué O; Louis K; Dayem M; Milanini J; Pages G; Tartare-Deckert S; Ponzio G; Hofman P; Barbry P; Auberger P; Mari B Oncogene; 2003 Nov; 22(52):8487-97. PubMed ID: 14627989 [TBL] [Abstract][Full Text] [Related]
17. Specific increase of human kallikrein 4 mRNA and protein levels in breast cancer stromal cells. Mangé A; Desmetz C; Berthes ML; Maudelonde T; Solassol J Biochem Biophys Res Commun; 2008 Oct; 375(1):107-12. PubMed ID: 18687310 [TBL] [Abstract][Full Text] [Related]
18. Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Micke P; Ostman A Lung Cancer; 2004 Aug; 45 Suppl 2():S163-75. PubMed ID: 15552797 [TBL] [Abstract][Full Text] [Related]
19. Evidence that molecular changes in cells occur before morphological alterations during the progression of breast ductal carcinoma. Castro NP; Osório CA; Torres C; Bastos EP; Mourão-Neto M; Soares FA; Brentani HP; Carraro DM Breast Cancer Res; 2008; 10(5):R87. PubMed ID: 18928525 [TBL] [Abstract][Full Text] [Related]
20. Combined total genome loss of heterozygosity scan of breast cancer stroma and epithelium reveals multiplicity of stromal targets. Fukino K; Shen L; Matsumoto S; Morrison CD; Mutter GL; Eng C Cancer Res; 2004 Oct; 64(20):7231-6. PubMed ID: 15492239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]