BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 18373247)

  • 1. Detection of post-translational modifications by fluorescent staining of two-dimensional gels.
    Jacob AM; Turck CW
    Methods Mol Biol; 2008; 446():21-32. PubMed ID: 18373247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Posttranslational Modifications by Fluorescent Staining of Two-Dimensional Gels.
    Jastorff AM; Turck CW
    Methods Mol Biol; 2019; 1934():21-32. PubMed ID: 31256370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of two-dimensional gel-separated proteins using sequential staining.
    Wu J; Lenchik NJ; Pabst MJ; Solomon SS; Shull J; Gerling IC
    Electrophoresis; 2005 Jan; 26(1):225-37. PubMed ID: 15624177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative detection of phosphoproteins by combination of two-dimensional difference gel electrophoresis and phosphospecific fluorescent staining.
    Stasyk T; Morandell S; Bakry R; Feuerstein I; Huck CW; Stecher G; Bonn GK; Huber LA
    Electrophoresis; 2005 Jul; 26(14):2850-4. PubMed ID: 15966015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoproteome profile of human liver Chang's cell based on 2-DE with fluorescence staining and MALDI-TOF/TOF-MS.
    Liu J; Cai Y; Wang J; Zhou Q; Yang B; Lu Z; Jiao L; Zhang D; Sui S; Jiang Y; Ying W; Qian X
    Electrophoresis; 2007 Dec; 28(23):4348-58. PubMed ID: 17987627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of ultra acidic proteins by the use of anodic acidic gels.
    Hempel K; Rosen R; Becher D; Büttner K; Hecker M; Ron EZ
    Anal Biochem; 2009 Feb; 385(2):208-14. PubMed ID: 19084495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein detection and quantitation technologies for gel-based proteome analysis.
    Weiss W; Weiland F; Görg A
    Methods Mol Biol; 2009; 564():59-82. PubMed ID: 19544017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated analytical strategies for the study of phosphorylation and glycosylation in proteins.
    Temporini C; Calleri E; Massolini G; Caccialanza G
    Mass Spectrom Rev; 2008; 27(3):207-36. PubMed ID: 18335498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Difference gel electrophoresis based on lys/cys tagging.
    Westermeier R; Scheibe B
    Methods Mol Biol; 2008; 424():73-85. PubMed ID: 18369854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Recent advances of protein phosphorylation in proteome].
    Yang C; Wang ZG; Zhu PF
    Sheng Li Ke Xue Jin Zhan; 2004 Apr; 35(2):119-24. PubMed ID: 15285416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of post-translationally modified proteins in proteome studies.
    Sickmann A; Marcus K; Schäfer H; Butt-Dörje E; Lehr S; Herkner A; Suer S; Bahr I; Meyer HE
    Electrophoresis; 2001 May; 22(9):1669-76. PubMed ID: 11425222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-covalent and covalent protein labeling in two-dimensional gel electrophoresis.
    Riederer BM
    J Proteomics; 2008 Jul; 71(2):231-44. PubMed ID: 18556257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive, quantitative, and fast modifications for Coomassie Blue staining of polyacrylamide gels.
    Westermeier R
    Proteomics; 2006 Sep; 6 Suppl 2():61-4. PubMed ID: 17031800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hares and tortoises: the high- versus low-throughput proteomic race.
    Wilkins MR
    Electrophoresis; 2009 Jun; 30 Suppl 1():S150-5. PubMed ID: 19441020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein profiling based on two-dimensional difference gel electrophoresis.
    Van den Bergh G; Arckens L
    Methods Mol Biol; 2008; 439():211-24. PubMed ID: 18370106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of difference in-gel electrophoresis for quantitation of protein expression.
    Sapra R
    Methods Mol Biol; 2009; 492():93-112. PubMed ID: 19241028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initial analysis of the phosphoproteome of Chinese hamster ovary cells using electrophoresis.
    Chen Z; Southwick K; Thulin CD
    J Biomol Tech; 2004 Dec; 15(4):249-56. PubMed ID: 15585821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of post-translational modifications for learning and memory formation.
    Sunyer B; Diao W; Lubec G
    Electrophoresis; 2008 Jun; 29(12):2593-602. PubMed ID: 18494028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential interval motif search: unrestricted database surveys of global MS/MS data sets for detection of putative post-translational modifications.
    Liu J; Erassov A; Halina P; Canete M; Nguyen DV; Chung C; Cagney G; Ignatchenko A; Fong V; Emili A
    Anal Chem; 2008 Oct; 80(20):7846-54. PubMed ID: 18788753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-terminal sequence analysis of 2DE-separated proteins.
    Samyn B; Sergeant K; Van Beeumen J
    Methods Mol Biol; 2009; 519():469-82. PubMed ID: 19381603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.