BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 18373270)

  • 1. Web-based computational tools for the prediction and analysis of post-translational modifications of proteins.
    Ivanisenko VA; Afonnikov DA; Kolchanov NA
    Methods Mol Biol; 2008; 446():363-84. PubMed ID: 18373270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Web-Based Computational Tools for the Prediction and Analysis of Posttranslational Modifications of Proteins.
    Ivanisenko VA; Ivanisenko TV; Saik OV; Demenkov PS; Afonnikov DA; Kolchanov NA
    Methods Mol Biol; 2019; 1934():1-20. PubMed ID: 31256369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A general user interface for prediction servers of proteins' post-translational modification sites.
    Zhou F; Xue Y; Yao X; Xu Y
    Nat Protoc; 2006; 1(3):1318-21. PubMed ID: 17406417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of posttranslational modifications using intact-protein mass spectrometric data.
    Holmes MR; Giddings MC
    Anal Chem; 2004 Jan; 76(2):276-82. PubMed ID: 14719871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current approaches for global post-translational modification discovery and mass spectrometric analysis.
    Hoffman MD; Sniatynski MJ; Kast J
    Anal Chim Acta; 2008 Oct; 627(1):50-61. PubMed ID: 18790127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile.
    Liu Y; Wang M; Xi J; Luo F; Li A
    Int J Biol Sci; 2018; 14(8):946-956. PubMed ID: 29989096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting O-glycosylation sites in mammalian proteins by using SVMs.
    Li S; Liu B; Zeng R; Cai Y; Li Y
    Comput Biol Chem; 2006 Jun; 30(3):203-8. PubMed ID: 16731044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential interval motif search: unrestricted database surveys of global MS/MS data sets for detection of putative post-translational modifications.
    Liu J; Erassov A; Halina P; Canete M; Nguyen DV; Chung C; Cagney G; Ignatchenko A; Fong V; Emili A
    Anal Chem; 2008 Oct; 80(20):7846-54. PubMed ID: 18788753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico prediction of post-translational modifications.
    Liu C; Li H
    Methods Mol Biol; 2011; 760():325-40. PubMed ID: 21780006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MAPRes: an efficient method to analyze protein sequence around post-translational modification sites.
    Ahmad I; Hoessli DC; Qazi WM; Khurshid A; Mehmood A; Walker-Nasir E; Ahmad M; Shakoori AR;
    J Cell Biochem; 2008 Jul; 104(4):1220-31. PubMed ID: 18286469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-translational modifications: a challenge for proteomics and bioinformatics.
    Appel RD; Bairoch A
    Proteomics; 2004 Jun; 4(6):1525-6. PubMed ID: 15174121
    [No Abstract]   [Full Text] [Related]  

  • 12. Workflow for large scale detection and validation of peptide modifications by RPLC-LTQ-Orbitrap: application to the Arabidopsis thaliana leaf proteome and an online modified peptide library.
    Zybailov B; Sun Q; van Wijk KJ
    Anal Chem; 2009 Oct; 81(19):8015-24. PubMed ID: 19725545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of lysine post-translational modifications using bioinformatic tools.
    Schwartz D
    Essays Biochem; 2012; 52():165-77. PubMed ID: 22708570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of potential protein post-translational modifications of the thioredoxin-1 molecule.
    Wiwanitkit V
    Cardiovasc J Afr; 2009; 20(6):363. PubMed ID: 20024481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting oxidative post-translational modifications in proteins.
    Gianazza E; Crawford J; Miller I
    Amino Acids; 2007 Jul; 33(1):51-6. PubMed ID: 17021655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Post-translational modification (PTM) bioinformatics in China: progresses and perspectives].
    Liu ZX; Cai YD; Guo XJ; Li A; Li TT; Qiu JD; Ren J; Shi SP; Song JN; Wang MH; Xie L; Xue Y; Zhang ZD; Zhao XM
    Yi Chuan; 2015 Jul; 37(7):621-34. PubMed ID: 26351162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Systematic Review on Posttranslational Modification in Proteins: Feature Construction, Algorithm and Webserver.
    Xu Y; Yang Y; Wang Z; Li C; Shao Y
    Protein Pept Lett; 2018; 25(9):807-814. PubMed ID: 30255739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New in protein structure and function annotation: hotspots, single nucleotide polymorphisms and the 'Deep Web'.
    Bromberg Y; Yachdav G; Ofran Y; Schneider R; Rost B
    Curr Opin Drug Discov Devel; 2009 May; 12(3):408-19. PubMed ID: 19396742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MAPRes: Mining association patterns among preferred amino acid residues in the vicinity of amino acids targeted for post-translational modifications.
    Ahmad I; Qazi WM; Khurshid A; Ahmad M; Hoessli DC; Khawaja I; Choudhary MI; Shakoori AR;
    Proteomics; 2008 May; 8(10):1954-8. PubMed ID: 18491291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational studies of protein regulation by post-translational phosphorylation.
    Narayanan A; Jacobson MP
    Curr Opin Struct Biol; 2009 Apr; 19(2):156-63. PubMed ID: 19339172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.