These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 18373343)
1. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. Wang F; Gu H; Swager TM J Am Chem Soc; 2008 Apr; 130(16):5392-3. PubMed ID: 18373343 [TBL] [Abstract][Full Text] [Related]
2. Hole doping and surface functionalization of single-walled carbon nanotube chemiresistive sensors for ultrasensitive and highly selective organophosphor vapor detection. Wei L; Shi D; Ye P; Dai Z; Chen H; Chen C; Wang J; Zhang L; Xu D; Wang Z; Zhang Y Nanotechnology; 2011 Oct; 22(42):425501. PubMed ID: 21934197 [TBL] [Abstract][Full Text] [Related]
3. Novel pyrenehexafluoroisopropanol derivative-decorated single-walled carbon nanotubes for detection of nerve agents by strong hydrogen-bonding interaction. Kong L; Wang J; Luo T; Meng F; Chen X; Li M; Liu J Analyst; 2010 Feb; 135(2):368-74. PubMed ID: 20098772 [TBL] [Abstract][Full Text] [Related]
4. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Liu G; Lin Y Anal Chem; 2006 Feb; 78(3):835-43. PubMed ID: 16448058 [TBL] [Abstract][Full Text] [Related]
5. Modifying the response of a polymer-based quartz crystal microbalance hydrocarbon sensor with functionalized carbon nanotubes. Pejcic B; Myers M; Ranwala N; Boyd L; Baker M; Ross A Talanta; 2011 Sep; 85(3):1648-57. PubMed ID: 21807235 [TBL] [Abstract][Full Text] [Related]
6. Molecular recognition for high selectivity in carbon nanotube/polythiophene chemiresistors. Wang F; Yang Y; Swager TM Angew Chem Int Ed Engl; 2008; 47(44):8394-6. PubMed ID: 18830944 [No Abstract] [Full Text] [Related]
7. Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection. Wang Y; Zhou Z; Yang Z; Chen X; Xu D; Zhang Y Nanotechnology; 2009 Aug; 20(34):345502. PubMed ID: 19652278 [TBL] [Abstract][Full Text] [Related]
8. Array of Love-wave sensors based on quartz/Novolac to detect CWA simulants. Matatagui D; Fontecha J; Fernández MJ; Aleixandre M; Gràcia I; Cané C; Horrillo MC Talanta; 2011 Sep; 85(3):1442-7. PubMed ID: 21807207 [TBL] [Abstract][Full Text] [Related]
9. Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor. Aravinda CL; Cosnier S; Chen W; Myung NV; Mulchandani A Biosens Bioelectron; 2009 Jan; 24(5):1451-5. PubMed ID: 18930385 [TBL] [Abstract][Full Text] [Related]
11. Enzyme-free sugar sensing in microfluidic channels with an affinity-based single-wall carbon nanotube sensor. Vlandas A; Kurkina T; Ahmad A; Kern K; Balasubramanian K Anal Chem; 2010 Jul; 82(14):6090-7. PubMed ID: 20552987 [TBL] [Abstract][Full Text] [Related]
12. Chemical functionalization of electrodes for detection of gaseous nerve agents with carbon nanotube field-effect transistors. Delalande M; Clavaguera S; Toure M; Carella A; Lenfant S; Deresmes D; Vuillaume D; Simonato JP Chem Commun (Camb); 2011 Jun; 47(21):6048-50. PubMed ID: 21528147 [TBL] [Abstract][Full Text] [Related]
13. Sensing of aqueous phosphates by polymers with dual modes of signal transduction. Aldakov D; Anzenbacher P J Am Chem Soc; 2004 Apr; 126(15):4752-3. PubMed ID: 15080659 [TBL] [Abstract][Full Text] [Related]
14. A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents. Lee JH; Park JY; Min K; Cha HJ; Choi SS; Yoo YJ Biosens Bioelectron; 2010 Mar; 25(7):1566-70. PubMed ID: 20093002 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors. Kim JP; Lee BY; Lee J; Hong S; Sim SJ Biosens Bioelectron; 2009 Jul; 24(11):3372-8. PubMed ID: 19481922 [TBL] [Abstract][Full Text] [Related]
16. Carbon nanotube array: a new MIP platform. Choong CL; Bendall JS; Milne WI Biosens Bioelectron; 2009 Nov; 25(3):652-6. PubMed ID: 19162461 [TBL] [Abstract][Full Text] [Related]
17. [Carbon nanotube-based biosensors for DNA structure characterization]. Abdullin TI; Bondar' OV; Rizvanov AA; Nikitina II Prikl Biokhim Mikrobiol; 2009; 45(2):252-6. PubMed ID: 19382717 [TBL] [Abstract][Full Text] [Related]
18. A simple approach for the discrimination of nucleotides based on a water-soluble polythiophene derivative. Yao Z; Feng X; Hong W; Li C; Shi G Chem Commun (Camb); 2009 Aug; (31):4696-8. PubMed ID: 19641813 [TBL] [Abstract][Full Text] [Related]
19. Conductive bio-Polymer nano-Composites (CPC): chitosan-carbon nanotube transducers assembled via spray layer-by-layer for volatile organic compound sensing. Kumar B; Feller JF; Castro M; Lu J Talanta; 2010 May; 81(3):908-15. PubMed ID: 20298872 [TBL] [Abstract][Full Text] [Related]
20. Carbon nanotube/gold nanoparticles/polyethylenimine-functionalized ionic liquid thin film composites for glucose biosensing. Jia F; Shan C; Li F; Niu L Biosens Bioelectron; 2008 Dec; 24(4):951-6. PubMed ID: 18790629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]