These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18373524)

  • 1. Borrelia burgdorferi membranes are the primary targets of reactive oxygen species.
    Boylan JA; Lawrence KA; Downey JS; Gherardini FC
    Mol Microbiol; 2008 May; 68(3):786-99. PubMed ID: 18373524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the cellular targets of reactive oxygen species in Borrelia burgdorferi.
    Boylan JA; Gherardini FC
    Methods Mol Biol; 2008; 431():213-21. PubMed ID: 18287759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrosative damage to free and zinc-bound cysteine thiols underlies nitric oxide toxicity in wild-type Borrelia burgdorferi.
    Bourret TJ; Boylan JA; Lawrence KA; Gherardini FC
    Mol Microbiol; 2011 Jul; 81(1):259-73. PubMed ID: 21564333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyruvate protects pathogenic spirochetes from H2O2 killing.
    Troxell B; Zhang JJ; Bourret TJ; Zeng MY; Blum J; Gherardini F; Hassan HM; Yang XF
    PLoS One; 2014; 9(1):e84625. PubMed ID: 24392147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conservative amino acid change alters the function of BosR, the redox regulator of Borrelia burgdorferi.
    Seshu J; Boylan JA; Hyde JA; Swingle KL; Gherardini FC; Skare JT
    Mol Microbiol; 2004 Dec; 54(5):1352-63. PubMed ID: 15554974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the inner membrane protein BB0173 from Borrelia burgdorferi.
    Brock CM; Bañó-Polo M; Garcia-Murria MJ; Mingarro I; Esteve-Gasent M
    BMC Microbiol; 2017 Nov; 17(1):219. PubMed ID: 29166863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-throughput genetic screen identifies previously uncharacterized Borrelia burgdorferi genes important for resistance against reactive oxygen and nitrogen species.
    Ramsey ME; Hyde JA; Medina-Perez DN; Lin T; Gao L; Lundt ME; Li X; Norris SJ; Skare JT; Hu LT
    PLoS Pathog; 2017 Feb; 13(2):e1006225. PubMed ID: 28212410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Borrelia burgdorferi bb0728 encodes a coenzyme A disulphide reductase whose function suggests a role in intracellular redox and the oxidative stress response.
    Boylan JA; Hummel CS; Benoit S; Garcia-Lara J; Treglown-Downey J; Crane EJ; Gherardini FC
    Mol Microbiol; 2006 Jan; 59(2):475-86. PubMed ID: 16390443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-Chain Fatty Acids Alter Metabolic and Virulence Attributes of Borrelia burgdorferi.
    Lin YH; Chen Y; Smith TC; Karna SLR; Seshu J
    Infect Immun; 2018 Sep; 86(9):. PubMed ID: 29891543
    [No Abstract]   [Full Text] [Related]  

  • 10. Coumermycin A1 inhibits growth and induces relaxation of supercoiled plasmids in Borrelia burgdorferi, the Lyme disease agent.
    Samuels DS; Garon CF
    Antimicrob Agents Chemother; 1993 Jan; 37(1):46-50. PubMed ID: 8381639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Borrelia burgdorferi inhibits NADPH-mediated reactive oxygen species production through the mTOR pathway.
    Kerstholt M; Brouwer M; Te Vrugt M; Oosting M; Netea MG; Joosten LAB
    Ticks Tick Borne Dis; 2022 Jul; 13(4):101943. PubMed ID: 35381468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of Borrelia burgdorferi uvrA in DNA damage protection.
    Sambir M; Ivanova LB; Bryksin AV; Godfrey HP; Cabello FC
    FEMS Microbiol Lett; 2011 Apr; 317(2):172-80. PubMed ID: 21272060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of outer membranes isolated from Borrelia burgdorferi, the Lyme disease spirochete.
    Radolf JD; Goldberg MS; Bourell K; Baker SI; Jones JD; Norgard MV
    Infect Immun; 1995 Jun; 63(6):2154-63. PubMed ID: 7768594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serum-resistant strains of Borrelia burgdorferi evade complement-mediated killing by expressing a CD59-like complement inhibitory molecule.
    Pausa M; Pellis V; Cinco M; Giulianini PG; Presani G; Perticarari S; Murgia R; Tedesco F
    J Immunol; 2003 Mar; 170(6):3214-22. PubMed ID: 12626580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New antibiotic resistance cassettes suitable for genetic studies in Borrelia burgdorferi.
    Elias AF; Bono JL; Kupko JJ; Stewart PE; Krum JG; Rosa PA
    J Mol Microbiol Biotechnol; 2003; 6(1):29-40. PubMed ID: 14593251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolved oxygen levels alter gene expression and antigen profiles in Borrelia burgdorferi.
    Seshu J; Boylan JA; Gherardini FC; Skare JT
    Infect Immun; 2004 Mar; 72(3):1580-6. PubMed ID: 14977964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BosR Is A Novel Fur Family Member Responsive to Copper and Regulating Copper Homeostasis in Borrelia burgdorferi.
    Wang P; Yu Z; Santangelo TJ; Olesik J; Wang Y; Heldwein E; Li X
    J Bacteriol; 2017 Aug; 199(16):. PubMed ID: 28583949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-species surface display of functional spirochetal lipoproteins by recombinant Borrelia burgdorferi.
    Zückert WR; Lloyd JE; Stewart PE; Rosa PA; Barbour AG
    Infect Immun; 2004 Mar; 72(3):1463-9. PubMed ID: 14977951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salivary gland extract from engorged Ixodes ricinus (Acari: Ixodidae) stimulates in vitro growth of Borrelia burgdorferi sensu lato.
    Rudolf I; Sikutová S; Kopecký J; Hubálek Z
    J Basic Microbiol; 2010 Jun; 50(3):294-8. PubMed ID: 20143350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generality of Post-Antimicrobial Treatment Persistence of
    Hodzic E; Imai DM; Escobar E
    Infect Immun; 2019 Oct; 87(10):. PubMed ID: 31308087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.