These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 18373550)

  • 1. Structural models and binding site prediction of the C-terminal domain of human Hsp90: a new target for anticancer drugs.
    Sgobba M; Degliesposti G; Ferrari AM; Rastelli G
    Chem Biol Drug Des; 2008 May; 71(5):420-433. PubMed ID: 18373550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and biological testing of peptidic dimerization inhibitors of human Hsp90 that target the C-terminal domain.
    Bopp B; Ciglia E; Ouald-Chaib A; Groth G; Gohlke H; Jose J
    Biochim Biophys Acta; 2016 Jun; 1860(6):1043-55. PubMed ID: 26774645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational dynamics of the molecular chaperone Hsp90 in complexes with a co-chaperone and anticancer drugs.
    Phillips JJ; Yao ZP; Zhang W; McLaughlin S; Laue ED; Robinson CV; Jackson SE
    J Mol Biol; 2007 Oct; 372(5):1189-203. PubMed ID: 17764690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural studies on the co-chaperone Hop and its complexes with Hsp90.
    Onuoha SC; Coulstock ET; Grossmann JG; Jackson SE
    J Mol Biol; 2008 Jun; 379(4):732-44. PubMed ID: 18485364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the binding site of C-terminal hsp90 inhibitors.
    Sgobba M; Forestiero R; Degliesposti G; Rastelli G
    J Chem Inf Model; 2010 Sep; 50(9):1522-8. PubMed ID: 20828111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico identification and computational analysis of the nucleotide binding site in the C-terminal domain of Hsp90.
    Roy SS; Kapoor M
    J Mol Graph Model; 2016 Nov; 70():253-274. PubMed ID: 27771574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinventing Hsp90 Inhibitors: Blocking C-Terminal Binding Events to Hsp90 by Using Dimerized Inhibitors.
    Koay YC; Wahyudi H; McAlpine SR
    Chemistry; 2016 Dec; 22(51):18572-18582. PubMed ID: 27859703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site.
    Harris SF; Shiau AK; Agard DA
    Structure; 2004 Jun; 12(6):1087-97. PubMed ID: 15274928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural ensemble-based docking simulation and biophysical studies discovered new inhibitors of Hsp90 N-terminal domain.
    Kim HH; Hyun JS; Choi J; Choi KE; Jee JG; Park SJ
    Sci Rep; 2018 Jan; 8(1):368. PubMed ID: 29321504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hsp90 is a direct target of the anti-allergic drugs disodium cromoglycate and amlexanox.
    Okada M; Itoh H; Hatakeyama T; Tokumitsu H; Kobayashi R
    Biochem J; 2003 Sep; 374(Pt 2):433-41. PubMed ID: 12803546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Could the FDA-approved anti-HIV PR inhibitors be promising anticancer agents? An answer from enhanced docking approach and molecular dynamics analyses.
    Arodola OA; Soliman ME
    Drug Des Devel Ther; 2015; 9():6055-65. PubMed ID: 26622167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and Evaluation of a Novel Deguelin Derivative, L80, which Disrupts ATP Binding to the C-terminal Domain of Heat Shock Protein 90.
    Lee SC; Min HY; Choi H; Kim HS; Kim KC; Park SJ; Seong MA; Seo JH; Park HJ; Suh YG; Kim KW; Hong HS; Kim H; Lee MY; Lee J; Lee HY
    Mol Pharmacol; 2015 Aug; 88(2):245-55. PubMed ID: 25976766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the Hsp90 C-terminal domain by the chemically accessible dihydropyrimidinone scaffold.
    Strocchia M; Terracciano S; Chini MG; Vassallo A; Vaccaro MC; Dal Piaz F; Leone A; Riccio R; Bruno I; Bifulco G
    Chem Commun (Camb); 2015 Mar; 51(18):3850-3. PubMed ID: 25656927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of dual agents as an activator of mutant p53 and inhibitor of Hsp90 by docking, molecular dynamic simulation and virtual screening.
    Abbasi M; Sadeghi-Aliabadi H; Hassanzadeh F; Amanlou M
    J Mol Graph Model; 2015 Sep; 61():186-95. PubMed ID: 26277488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidation of the Hsp90 C-terminal inhibitor binding site.
    Matts RL; Dixit A; Peterson LB; Sun L; Voruganti S; Kalyanaraman P; Hartson SD; Verkhivker GM; Blagg BS
    ACS Chem Biol; 2011 Aug; 6(8):800-7. PubMed ID: 21548602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting conformational dynamics in drug discovery: design of C-terminal inhibitors of Hsp90 with improved activities.
    Moroni E; Zhao H; Blagg BS; Colombo G
    J Chem Inf Model; 2014 Jan; 54(1):195-208. PubMed ID: 24397468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The first report of direct inhibitors that target the C-terminal MEEVD region on heat shock protein 90.
    Buckton LK; Wahyudi H; McAlpine SR
    Chem Commun (Camb); 2016 Jan; 52(3):501-4. PubMed ID: 26528929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of Novel Hsp90 C-Terminal Inhibitors Using 3D-Pharmacophores Derived from Molecular Dynamics Simulations.
    Tomašič T; Durcik M; Keegan BM; Skledar DG; Zajec Ž; Blagg BSJ; Bryant SD
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32962253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying a C-terminal ATP binding sites-based novel Hsp90-Inhibitor in silico: a plausible therapeutic approach in Alzheimer's disease.
    Khalid S; Paul S
    Med Hypotheses; 2014 Jul; 83(1):39-46. PubMed ID: 24785461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential C-terminal-domain inhibitors of heat shock protein 90 derived from a C-terminal peptide helix.
    Gavenonis J; Jonas NE; Kritzer JA
    Bioorg Med Chem; 2014 Aug; 22(15):3989-93. PubMed ID: 24984936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.