These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 18373677)

  • 1. Architecture of Deinococcus geothermalis biofilms on glass and steel: a lectin study.
    Peltola M; Neu TR; Raulio M; Kolari M; Salkinoja-Salonen MS
    Environ Microbiol; 2008 Jul; 10(7):1752-9. PubMed ID: 18373677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of adhesion threads of Deinococcus geothermalis as type IV pili.
    Saarimaa C; Peltola M; Raulio M; Neu TR; Salkinoja-Salonen MS; Neubauer P
    J Bacteriol; 2006 Oct; 188(19):7016-21. PubMed ID: 16980504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of biofilm formation in paper machine by Bacillus species: the role of Deinococcus geothermalis.
    Kolari M; Nuutinen J; Salkinoja-Salonen MS
    J Ind Microbiol Biotechnol; 2001 Dec; 27(6):343-51. PubMed ID: 11773998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and on-site formation of biofilms in paper machine water flow.
    Mattila K; Weber A; Salkinoja-Salonen MS
    J Ind Microbiol Biotechnol; 2002 May; 28(5):268-79. PubMed ID: 11986931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biofilm forming potential of bacterial species in the genus Campylobacter.
    Gunther NW; Chen CY
    Food Microbiol; 2009 Feb; 26(1):44-51. PubMed ID: 19028304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Destruction of Deinococcus geothermalis biofilm by photocatalytic ALD and sol-gel TiO2 surfaces.
    Raulio M; Pore V; Areva S; Ritala M; Leskelä M; Lindén M; Rosenholm JB; Lounatmaa K; Salkinoja-Salonen M
    J Ind Microbiol Biotechnol; 2006 Apr; 33(4):261-8. PubMed ID: 16362272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Firm but slippery attachment of Deinococcus geothermalis.
    Kolari M; Schmidt U; Kuismanen E; Salkinoja-Salonen MS
    J Bacteriol; 2002 May; 184(9):2473-80. PubMed ID: 11948162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of biofilm by Staphylococcus xylosus.
    Planchon S; Gaillard-Martinie B; Dordet-Frisoni E; Bellon-Fontaine MN; Leroy S; Labadie J; Hébraud M; Talon R
    Int J Food Microbiol; 2006 May; 109(1-2):88-96. PubMed ID: 16503066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser disruption of biofilm.
    Krespi YP; Stoodley P; Hall-Stoodley L
    Laryngoscope; 2008 Jul; 118(7):1168-73. PubMed ID: 18401277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesion of Pseudomonas fluorescens biofilms to glass, stainless steel and cellulose.
    Wan Dagang WR; Bowen J; O'Keeffe J; Robbins PT; Zhang Z
    Biotechnol Lett; 2016 May; 38(5):787-92. PubMed ID: 26892223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polysaccharide differences between planktonic and biofilm-associated EPS from Pseudomonas fluorescens B52.
    Kives J; Orgaz B; Sanjosé C
    Colloids Surf B Biointerfaces; 2006 Oct; 52(2):123-7. PubMed ID: 16757156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-species microbial biofilm screening for industrial applications.
    Li XZ; Hauer B; Rosche B
    Appl Microbiol Biotechnol; 2007 Oct; 76(6):1255-62. PubMed ID: 17653709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The adherence of Salmonella Enteritidis PT4 to stainless steel: the importance of the air-liquid interface and nutrient availability.
    Giaouris ED; Nychas GJ
    Food Microbiol; 2006 Dec; 23(8):747-52. PubMed ID: 16943077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms.
    Staudt C; Horn H; Hempel DC; Neu TR
    Biotechnol Bioeng; 2004 Dec; 88(5):585-92. PubMed ID: 15470707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry.
    Dheilly A; Linossier I; Darchen A; Hadjiev D; Corbel C; Alonso V
    Appl Microbiol Biotechnol; 2008 May; 79(1):157-64. PubMed ID: 18330564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm formation by Stenotrophomonas maltophilia isolates from device-associated nosocomial infections.
    Passerini de Rossi B; Calenda M; Vay C; Franco M
    Rev Argent Microbiol; 2007; 39(4):204-12. PubMed ID: 18390153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pioneer colonizer microorganisms in biofilm formation on galvanized steel in a simulated recirculating cooling-water system.
    Doğruöz N; Göksay D; Ilhan-Sungur E; Cotuk A
    J Basic Microbiol; 2009 Sep; 49 Suppl 1():S5-12. PubMed ID: 19455520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ evidence for microdomains in the polymer matrix of bacterial microcolonies.
    Lawrence JR; Swerhone GD; Kuhlicke U; Neu TR
    Can J Microbiol; 2007 Mar; 53(3):450-8. PubMed ID: 17538657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative contributions of bacteria and of Deinococcus geothermalis to deposits and slimes in paper industry.
    Peltola M; Kanto Oqvist C; Ekman J; Kosonen M; Jokela S; Kolari M; Korhonen P; Salkinoja-Salonen M
    J Ind Microbiol Biotechnol; 2008 Dec; 35(12):1651-7. PubMed ID: 18726625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survival of Deinococcus geothermalis in Biofilms under Desiccation and Simulated Space and Martian Conditions.
    Frösler J; Panitz C; Wingender J; Flemming HC; Rettberg P
    Astrobiology; 2017 May; 17(5):431-447. PubMed ID: 28520474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.