These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Cai K; Gao D; Luo S; Zeng R; Yang J; Zhu X Physiol Plant; 2008 Oct; 134(2):324-33. PubMed ID: 18513376 [TBL] [Abstract][Full Text] [Related]
24. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Veneault-Fourrey C; Barooah M; Egan M; Wakley G; Talbot NJ Science; 2006 Apr; 312(5773):580-3. PubMed ID: 16645096 [TBL] [Abstract][Full Text] [Related]
25. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea. Lu JP; Feng XX; Liu XH; Lu Q; Wang HK; Lin FC Fungal Genet Biol; 2007 Sep; 44(9):819-29. PubMed ID: 17644013 [TBL] [Abstract][Full Text] [Related]
26. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Zhou B; Qu S; Liu G; Dolan M; Sakai H; Lu G; Bellizzi M; Wang GL Mol Plant Microbe Interact; 2006 Nov; 19(11):1216-28. PubMed ID: 17073304 [TBL] [Abstract][Full Text] [Related]
27. The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Odenbach D; Breth B; Thines E; Weber RW; Anke H; Foster AJ Mol Microbiol; 2007 Apr; 64(2):293-307. PubMed ID: 17378924 [TBL] [Abstract][Full Text] [Related]
28. Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea. Shao M; Wang J; Dean RA; Lin Y; Gao X; Hu S Plant Biotechnol J; 2008 Jan; 6(1):73-81. PubMed ID: 18005094 [TBL] [Abstract][Full Text] [Related]
29. The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Quilis J; Peñas G; Messeguer J; Brugidou C; San Segundo B Mol Plant Microbe Interact; 2008 Sep; 21(9):1215-31. PubMed ID: 18700826 [TBL] [Abstract][Full Text] [Related]
30. A rice blast-resistance genetic resource from wild rice in Yunnan, China. Yang MZ; Cheng ZQ; Chen SN; Qian J; Xu LL; Huang XQ Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Dec; 33(6):589-95. PubMed ID: 18349514 [TBL] [Abstract][Full Text] [Related]
31. Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis. Yang Y; Zhang H; Li G; Li W; Wang X; Song F Plant Biotechnol J; 2009 Oct; 7(8):763-77. PubMed ID: 19754836 [TBL] [Abstract][Full Text] [Related]
32. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Yang Y; Qi M; Mei C Plant J; 2004 Dec; 40(6):909-19. PubMed ID: 15584956 [TBL] [Abstract][Full Text] [Related]
33. Botcinins A, B, C, and D, metabolites produced by Botrytis cinerea, and their antifungal activity against Magnaporthe grisea, a pathogen of rice blast disease. Tani H; Koshino H; Sakuno E; Nakajima H J Nat Prod; 2005 Dec; 68(12):1768-72. PubMed ID: 16378371 [TBL] [Abstract][Full Text] [Related]
34. Antifungal activity of rice Pex5p, a receptor for peroxisomal matrix proteins. Lee JR; Park SC; Kim MH; Jung JH; Shin MR; Lee DH; Cheon MG; Park Y; Hahm KS; Lee SY Biochem Biophys Res Commun; 2007 Aug; 359(4):941-6. PubMed ID: 17568562 [TBL] [Abstract][Full Text] [Related]
35. Sucrose-mediated priming of plant defense responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants. Gómez-Ariza J; Campo S; Rufat M; Estopà M; Messeguer J; San Segundo B; Coca M Mol Plant Microbe Interact; 2007 Jul; 20(7):832-42. PubMed ID: 17601170 [TBL] [Abstract][Full Text] [Related]
36. Induced Pib Expression and Resistance to Magnaporthe grisea are Compromised by Cytosine Demethylation at Critical Promoter Regions in Rice. Li Y; Xia Q; Kou H; Wang D; Lin X; Wu Y; Xu C; Xing S; Liu B J Integr Plant Biol; 2011 Oct; 53(10):814-23. PubMed ID: 21781278 [TBL] [Abstract][Full Text] [Related]
37. A novel rice MAPK gene, OsBIMK2, is involved in disease-resistance responses. Song D; Chen J; Song F; Zheng Z Plant Biol (Stuttg); 2006 Sep; 8(5):587-96. PubMed ID: 16755461 [TBL] [Abstract][Full Text] [Related]
38. Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Domingo C; Andrés F; Tharreau D; Iglesias DJ; Talón M Mol Plant Microbe Interact; 2009 Feb; 22(2):201-10. PubMed ID: 19132872 [TBL] [Abstract][Full Text] [Related]
39. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection. Wang ZY; Soanes DM; Kershaw MJ; Talbot NJ Mol Plant Microbe Interact; 2007 May; 20(5):475-91. PubMed ID: 17506326 [TBL] [Abstract][Full Text] [Related]
40. OsRAR1 and OsSGT1 physically interact and function in rice basal disease resistance. Wang Y; Gao M; Li Q; Wang L; Wang J; Jeon JS; Qu N; Zhang Y; He Z Mol Plant Microbe Interact; 2008 Mar; 21(3):294-303. PubMed ID: 18257679 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]