BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 18374188)

  • 1. VKORC1 and the vitamin K cycle.
    Garcia AA; Reitsma PH
    Vitam Horm; 2008; 78():23-33. PubMed ID: 18374188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disulfide-dependent protein folding is linked to operation of the vitamin K cycle in the endoplasmic reticulum. A protein disulfide isomerase-VKORC1 redox enzyme complex appears to be responsible for vitamin K1 2,3-epoxide reduction.
    Wajih N; Hutson SM; Wallin R
    J Biol Chem; 2007 Jan; 282(4):2626-35. PubMed ID: 17124179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2.
    Rost S; Fregin A; Ivaskevicius V; Conzelmann E; Hörtnagel K; Pelz HJ; Lappegard K; Seifried E; Scharrer I; Tuddenham EG; Müller CR; Strom TM; Oldenburg J
    Nature; 2004 Feb; 427(6974):537-41. PubMed ID: 14765194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin.
    Rost S; Fregin A; Hünerberg M; Bevans CG; Müller CR; Oldenburg J
    Thromb Haemost; 2005 Oct; 94(4):780-6. PubMed ID: 16270630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin K epoxide reductase complex subunit 1 (VKORC1): the key protein of the vitamin K cycle.
    Oldenburg J; Bevans CG; Müller CR; Watzka M
    Antioxid Redox Signal; 2006; 8(3-4):347-53. PubMed ID: 16677080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Vitamin K epoxide reductase: Fresh blood for oral anticoagulant therapies].
    Loriot MA; Beaune P
    Rev Med Interne; 2006 Dec; 27(12):979-82. PubMed ID: 17070618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of a recombinant vitamin K-dependent gamma-carboxylation system with enhanced gamma-carboxyglutamic acid forming capacity: evidence for a functional CXXC redox center in the system.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2005 Mar; 280(11):10540-7. PubMed ID: 15640149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VKCFD2 - from clinical phenotype to molecular mechanism.
    Czogalla KJ; Watzka M; Oldenburg J
    Hamostaseologie; 2016 Nov; 36(Suppl. 2):S13-S20. PubMed ID: 27824210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arg98Trp mutation in human VKORC1 causing VKCFD2 disrupts a di-arginine-based ER retention motif.
    Czogalla KJ; Biswas A; Rost S; Watzka M; Oldenburg J
    Blood; 2014 Aug; 124(8):1354-62. PubMed ID: 24963046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Modeling Insights into Human VKORC1 Phenotypes.
    Czogalla KJ; Watzka M; Oldenburg J
    Nutrients; 2015 Aug; 7(8):6837-51. PubMed ID: 26287237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of protein disulfide isomerase enhances vitamin K epoxide reductase activity.
    Chetot T; Benoit E; Lambert V; Lattard V
    Biochem Cell Biol; 2022 Apr; 100(2):152-161. PubMed ID: 35007172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VKORC1 deficiency in mice causes early postnatal lethality due to severe bleeding.
    Spohn G; Kleinridders A; Wunderlich FT; Watzka M; Zaucke F; Blumbach K; Geisen C; Seifried E; Müller C; Paulsson M; Brüning JC; Oldenburg J
    Thromb Haemost; 2009 Jun; 101(6):1044-50. PubMed ID: 19492146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacodynamic resistance to warfarin associated with a Val66Met substitution in vitamin K epoxide reductase complex subunit 1.
    Harrington DJ; Underwood S; Morse C; Shearer MJ; Tuddenham EG; Mumford AD
    Thromb Haemost; 2005 Jan; 93(1):23-6. PubMed ID: 15630486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VKORC1: a warfarin-sensitive enzyme in vitamin K metabolism and biosynthesis of vitamin K-dependent blood coagulation factors.
    Wallin R; Wajih N; Hutson SM
    Vitam Horm; 2008; 78():227-46. PubMed ID: 18374197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitamin K epoxide reductase: homology, active site and catalytic mechanism.
    Goodstadt L; Ponting CP
    Trends Biochem Sci; 2004 Jun; 29(6):289-92. PubMed ID: 15276181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current pharmacogenetic developments in oral anticoagulation therapy: the influence of variant VKORC1 and CYP2C9 alleles.
    Oldenburg J; Bevans CG; Fregin A; Geisen C; Müller-Reible C; Watzka M
    Thromb Haemost; 2007 Sep; 98(3):570-8. PubMed ID: 17849045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Warfarin therapy: influence of pharmacogenetic and environmental factors on the anticoagulant response to warfarin.
    Siguret V; Pautas E; Gouin-Thibault I
    Vitam Horm; 2008; 78():247-64. PubMed ID: 18374198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The vitamin K oxidoreductase is a multimer that efficiently reduces vitamin K epoxide to hydroquinone to allow vitamin K-dependent protein carboxylation.
    Rishavy MA; Hallgren KW; Wilson LA; Usubalieva A; Runge KW; Berkner KL
    J Biol Chem; 2013 Nov; 288(44):31556-66. PubMed ID: 23918929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of vitamin K epoxide reductase.
    Tie JK; Stafford DW
    Vitam Horm; 2008; 78():103-30. PubMed ID: 18374192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VKORC1: molecular target of coumarins.
    Oldenburg J; Watzka M; Rost S; Müller CR
    J Thromb Haemost; 2007 Jul; 5 Suppl 1():1-6. PubMed ID: 17635701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.