BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 18374193)

  • 1. Vitamin K-dependent carboxylation.
    Berkner KL
    Vitam Horm; 2008; 78():131-56. PubMed ID: 18374193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The vitamin K-dependent carboxylase.
    Berkner KL
    Annu Rev Nutr; 2005; 25():127-49. PubMed ID: 16011462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The vitamin K-dependent carboxylase has been acquired by Leptospira pathogens and shows altered activity that suggests a role other than protein carboxylation.
    Rishavy MA; Hallgren KW; Yakubenko AV; Zuerner RL; Runge KW; Berkner KL
    J Biol Chem; 2005 Oct; 280(41):34870-7. PubMed ID: 16061481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vitamin K-Dependent Protein Activation: Normal Gamma-Glutamyl Carboxylation and Disruption in Disease.
    Berkner KL; Runge KW
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2004 Jun; 279(24):25276-83. PubMed ID: 15075329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitamin K-dependent carboxylation of the carboxylase.
    Berkner KL; Pudota BN
    Proc Natl Acad Sci U S A; 1998 Jan; 95(2):466-71. PubMed ID: 9435215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The vitamin K-dependent carboxylase.
    Berkner KL
    J Nutr; 2000 Aug; 130(8):1877-80. PubMed ID: 10917896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxylase overexpression effects full carboxylation but poor release and secretion of factor IX: implications for the release of vitamin K-dependent proteins.
    Hallgren KW; Hommema EL; McNally BA; Berkner KL
    Biochemistry; 2002 Dec; 41(50):15045-55. PubMed ID: 12475254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of sequences within the gamma-carboxylase that represent a novel contact site with vitamin K-dependent proteins and that are required for activity.
    Pudota BN; Hommema EL; Hallgren KW; McNally BA; Lee S; Berkner KL
    J Biol Chem; 2001 Dec; 276(50):46878-86. PubMed ID: 11591726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into the coupling mechanism of the vitamin K-dependent carboxylase: mutation of histidine 160 disrupts glutamic acid carbanion formation and efficient coupling of vitamin K epoxidation to glutamic acid carboxylation.
    Rishavy MA; Berkner KL
    Biochemistry; 2008 Sep; 47(37):9836-46. PubMed ID: 18717596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel insight into the mechanism of the vitamin K oxidoreductase (VKOR): electron relay through Cys43 and Cys51 reduces VKOR to allow vitamin K reduction and facilitation of vitamin K-dependent protein carboxylation.
    Rishavy MA; Usubalieva A; Hallgren KW; Berkner KL
    J Biol Chem; 2011 Mar; 286(9):7267-78. PubMed ID: 20978134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GGCX mutants that impair hemostasis reveal the importance of processivity and full carboxylation to VKD protein function.
    Rishavy MA; Hallgren KW; Wilson LA; Hiznay JM; Runge KW; Berkner KL
    Blood; 2022 Oct; 140(15):1710-1722. PubMed ID: 35767717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional insights into enzymes of the vitamin K cycle.
    Tie JK; Stafford DW
    J Thromb Haemost; 2016 Feb; 14(2):236-47. PubMed ID: 26663892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitamin K oxygenation, glutamate carboxylation, and processivity: defining the three critical facets of catalysis by the vitamin K-dependent carboxylase.
    Rishavy MA; Berkner KL
    Adv Nutr; 2012 Mar; 3(2):135-48. PubMed ID: 22516721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitamin K 2,3-epoxide reductase and the vitamin K-dependent gamma-carboxylation system.
    Wallin R; Sane DC; Hutson SM
    Thromb Res; 2002 Nov; 108(4):221-6. PubMed ID: 12617985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VKOR paralog VKORC1L1 supports vitamin K-dependent protein carboxylation in vivo.
    Lacombe J; Rishavy MA; Berkner KL; Ferron M
    JCI Insight; 2018 Jan; 3(1):. PubMed ID: 29321368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disulfide-dependent protein folding is linked to operation of the vitamin K cycle in the endoplasmic reticulum. A protein disulfide isomerase-VKORC1 redox enzyme complex appears to be responsible for vitamin K1 2,3-epoxide reduction.
    Wajih N; Hutson SM; Wallin R
    J Biol Chem; 2007 Jan; 282(4):2626-35. PubMed ID: 17124179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. r-VKORC1 expression in factor IX BHK cells increases the extent of factor IX carboxylation but is limited by saturation of another carboxylation component or by a shift in the rate-limiting step.
    Hallgren KW; Qian W; Yakubenko AV; Runge KW; Berkner KL
    Biochemistry; 2006 May; 45(17):5587-98. PubMed ID: 16634640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brønsted analysis reveals Lys218 as the carboxylase active site base that deprotonates vitamin K hydroquinone to initiate vitamin K-dependent protein carboxylation.
    Rishavy MA; Hallgren KW; Yakubenko AV; Shtofman RL; Runge KW; Berkner KL
    Biochemistry; 2006 Nov; 45(44):13239-48. PubMed ID: 17073445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of a recombinant vitamin K-dependent gamma-carboxylation system with enhanced gamma-carboxyglutamic acid forming capacity: evidence for a functional CXXC redox center in the system.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2005 Mar; 280(11):10540-7. PubMed ID: 15640149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.