BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 18374343)

  • 1. Analysis of the effect of swimmer's head position on swimming performance using computational fluid dynamics.
    Zaïdi H; Taïar R; Fohanno S; Polidori G
    J Biomech; 2008; 41(6):1350-8. PubMed ID: 18374343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turbulence model choice for the calculation of drag forces when using the CFD method.
    Zaïdi H; Fohanno S; Taïar R; Polidori G
    J Biomech; 2010 Feb; 43(3):405-11. PubMed ID: 19889420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of a postural change of the swimmer's head in hydrodynamic performances using 3D CFD.
    Popa CV; Arfaoui A; Fohanno S; Taïar R; Polidori G
    Comput Methods Biomech Biomed Engin; 2014; 17(4):344-51. PubMed ID: 22587390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics.
    Rouboa A; Silva A; Leal L; Rocha J; Alves F
    J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic body shape analysis and their impact on swimming performance.
    Li TZ; Zhan JM
    Acta Bioeng Biomech; 2015; 17(4):3-11. PubMed ID: 26898107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical streamline patterns at swimmer's surface using RANS equations.
    Arfaoui A; Popa CV; Taïar R; Polidori G; Fohanno S
    J Appl Biomech; 2012 Jul; 28(3):279-83. PubMed ID: 21975086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational fluid dynamics study of propulsion due to the orientation effects of swimmer's hand.
    Bilinauskaite M; Mantha VR; Rouboa AI; Ziliukas P; Silva AJ
    J Appl Biomech; 2013 Dec; 29(6):817-23. PubMed ID: 24482258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulations of undulatory swimming at moderate Reynolds number.
    Eldredge JD
    Bioinspir Biomim; 2006 Dec; 1(4):S19-24. PubMed ID: 17671314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The optimum finger spacing in human swimming.
    Minetti AE; Machtsiras G; Masters JC
    J Biomech; 2009 Sep; 42(13):2188-90. PubMed ID: 19651409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skin-friction drag analysis from the forced convection modeling in simplified underwater swimming.
    Polidori G; Taïar R; Fohanno S; Mai TH; Lodini A
    J Biomech; 2006; 39(13):2535-41. PubMed ID: 16153653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational fluid dynamics study of swimmer's hand velocity, orientation, and shape: contributions to hydrodynamics.
    Bilinauskaite M; Mantha VR; Rouboa AI; Ziliukas P; Silva AJ
    Biomed Res Int; 2013; 2013():140487. PubMed ID: 23691493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic analysis of human swimming based on VOF method.
    Zhan JM; Li TZ; Chen XB; Li YS
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):645-652. PubMed ID: 28127994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of wall shear stress around a competitive swimmer using 3D Navier-Stokes equations in CFD.
    Popa CV; Zaidi H; Arfaoui A; Polidori G; Taiar R; Fohanno S
    Acta Bioeng Biomech; 2011; 13(1):3-11. PubMed ID: 21500758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using reverse engineering and computational fluid dynamics to investigate a lower arm amputee swimmer's performance.
    Lecrivain G; Slaouti A; Payton C; Kennedy I
    J Biomech; 2008 Sep; 41(13):2855-9. PubMed ID: 18718594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swimming of a model ciliate near an air-liquid interface.
    Wang S; Ardekani AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063010. PubMed ID: 23848775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of a swimmer's hand and arm in steady flow conditions using computational fluid dynamics.
    Bixler B; Riewald S
    J Biomech; 2002 May; 35(5):713-7. PubMed ID: 11955512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of surface penetration on measured fluid force on a hand model.
    Kudo S; Vennell R; Wilson B; Waddell N; Sato Y
    J Biomech; 2008 Dec; 41(16):3502-5. PubMed ID: 19019377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Investigation of Swimmer's Gliding Stage with 6-DOF Movement.
    Li T; Cai W; Zhan J
    PLoS One; 2017; 12(1):e0170894. PubMed ID: 28125724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical and experimental investigations of human swimming motions.
    Takagi H; Nakashima M; Sato Y; Matsuuchi K; Sanders RH
    J Sports Sci; 2016 Aug; 34(16):1564-80. PubMed ID: 26699925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.