These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 18374440)
1. PCR assay for differentiating between Group I (proteolytic) and Group II (nonproteolytic) strains of Clostridium botulinum. Dahlsten E; Korkeala H; Somervuo P; Lindström M Int J Food Microbiol; 2008 May; 124(1):108-11. PubMed ID: 18374440 [TBL] [Abstract][Full Text] [Related]
2. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing. Lindström M; Kiviniemi K; Korkeala H Int J Food Microbiol; 2006 Apr; 108(1):92-104. PubMed ID: 16480785 [TBL] [Abstract][Full Text] [Related]
3. Prevalence of Clostridium species and behaviour of Clostridium botulinum in gnocchi, a REPFED of italian origin. Del Torre M; Stecchini ML; Braconnier A; Peck MW Int J Food Microbiol; 2004 Nov; 96(2):115-31. PubMed ID: 15364467 [TBL] [Abstract][Full Text] [Related]
4. Differentiation of Clostridium perfringens and Clostridium botulinum from non-toxigenic clostridia, isolated from prepared and frozen foods by PCR-DAN based methods. Córdoba MG; Aranda E; Medina LM; Jordano R; Córdoba JJ Nahrung; 2001 Apr; 45(2):125-8. PubMed ID: 11379285 [TBL] [Abstract][Full Text] [Related]
5. Clostridium botulinum in the post-genomic era. Peck MW; Stringer SC; Carter AT Food Microbiol; 2011 Apr; 28(2):183-91. PubMed ID: 21315972 [TBL] [Abstract][Full Text] [Related]
6. Presence of Clostridium botulinum spores in Matricaria chamomilla (chamomile) and its relationship with infant botulism. Bianco MI; Lúquez C; de Jong LI; Fernández RA Int J Food Microbiol; 2008 Feb; 121(3):357-60. PubMed ID: 18068252 [TBL] [Abstract][Full Text] [Related]
8. Prevalence and diversity of Clostridium botulinum types A, B, E and F in honey produced in the Nordic countries. Nevas M; Lindström M; Hautamäki K; Puoskari S; Korkeala H Int J Food Microbiol; 2005 Nov; 105(2):145-51. PubMed ID: 16054259 [TBL] [Abstract][Full Text] [Related]
9. Ecology of Clostridium botulinum causing food-borne botulism in Thailand. Wiwanitkit V Southeast Asian J Trop Med Public Health; 2006 Nov; 37(6):1160-2. PubMed ID: 17333770 [TBL] [Abstract][Full Text] [Related]
10. Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies. Sharma SK; Ferreira JL; Eblen BS; Whiting RC Appl Environ Microbiol; 2006 Feb; 72(2):1231-8. PubMed ID: 16461671 [TBL] [Abstract][Full Text] [Related]
11. Phenotypic characterization of Clostridium botulinum strains isolated from infant botulism cases in Argentina. Sagua MD; Lúquez C; Barzola CP; Bianco MI; Fernández RA Rev Argent Microbiol; 2009; 41(3):141-7. PubMed ID: 19831311 [TBL] [Abstract][Full Text] [Related]
12. Multiplex PCR assay for detection and identification of Clostridium botulinum types A, B, E, and F in food and fecal material. Lindström M; Keto R; Markkula A; Nevas M; Hielm S; Korkeala H Appl Environ Microbiol; 2001 Dec; 67(12):5694-9. PubMed ID: 11722924 [TBL] [Abstract][Full Text] [Related]
13. Fur animal botulism hazard due to feed. Myllykoski J; Lindström M; Bekema E; Pölönen I; Korkeala H Res Vet Sci; 2011 Jun; 90(3):412-8. PubMed ID: 20663530 [TBL] [Abstract][Full Text] [Related]
14. [Presence of botulinum-producing clostridia in the soils of Entre Ríos]. Lúquez C; Fernández RA; Bianco MI; de Jong LI; Saldaño V; Ciccarelli AS Rev Argent Microbiol; 2003; 35(1):45-8. PubMed ID: 12833680 [TBL] [Abstract][Full Text] [Related]
15. Pentaplexed quantitative real-time PCR assay for the simultaneous detection and quantification of botulinum neurotoxin-producing clostridia in food and clinical samples. Kirchner S; Krämer KM; Schulze M; Pauly D; Jacob D; Gessler F; Nitsche A; Dorner BG; Dorner MB Appl Environ Microbiol; 2010 Jul; 76(13):4387-95. PubMed ID: 20435756 [TBL] [Abstract][Full Text] [Related]
16. Presence of soil-dwelling clostridia in commercial powdered infant formulas. Barash JR; Hsia JK; Arnon SS J Pediatr; 2010 Mar; 156(3):402-8. PubMed ID: 20004414 [TBL] [Abstract][Full Text] [Related]
17. Development and application of a new method for specific and sensitive enumeration of spores of nonproteolytic Clostridium botulinum types B, E, and F in foods and food materials. Peck MW; Plowman J; Aldus CF; Wyatt GM; Izurieta WP; Stringer SC; Barker GC Appl Environ Microbiol; 2010 Oct; 76(19):6607-14. PubMed ID: 20709854 [TBL] [Abstract][Full Text] [Related]
18. Optimization of polymerase chain reaction for detection of Clostridium botulinum type C and D in bovine samples. Prévot V; Tweepenninckx F; Van Nerom E; Linden A; Content J; Kimpe A Zoonoses Public Health; 2007; 54(8):320-7. PubMed ID: 17894643 [TBL] [Abstract][Full Text] [Related]
19. Towards an international standard for detection and typing botulinum neurotoxin-producing Clostridia types A, B, E and F in food, feed and environmental samples: a European ring trial study to evaluate a real-time PCR assay. Fenicia L; Fach P; van Rotterdam BJ; Anniballi F; Segerman B; Auricchio B; Delibato E; Hamidjaja RA; Wielinga PR; Woudstra C; Agren J; De Medici D; Knutsson R Int J Food Microbiol; 2011 Mar; 145 Suppl 1():S152-7. PubMed ID: 21353718 [TBL] [Abstract][Full Text] [Related]
20. The detection and prevalence of Clostridium botulinum in pig intestinal samples. Myllykoski J; Nevas M; Lindström M; Korkeala H Int J Food Microbiol; 2006 Jul; 110(2):172-7. PubMed ID: 16806550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]