BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 18374621)

  • 1. Displacement of the head of humerus while performing "mobilization with movements" in glenohumeral joint: a cadaver study.
    Ho KY; Hsu AT
    Man Ther; 2009 Apr; 14(2):160-6. PubMed ID: 18374621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical analysis of axial distraction mobilization of the glenohumeral joint--a cadaver study.
    Hsu AT; Chiu JF; Chang JH
    Man Ther; 2009 Aug; 14(4):381-6. PubMed ID: 18805038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-axis passive and active stiffnesses of the glenohumeral joint.
    Makhsous M; Lin F; Zhang LQ
    Clin Biomech (Bristol, Avon); 2004 Feb; 19(2):107-15. PubMed ID: 14967572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical analysis comparing a traditional superior-inferior arthroscopic rotator interval closure with a novel medial-lateral technique in a cadaveric multidirectional instability model.
    Farber AJ; ElAttrache NS; Tibone JE; McGarry MH; Lee TQ
    Am J Sports Med; 2009 Jun; 37(6):1178-85. PubMed ID: 19282507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immediate effect of thermal capsulorrhaphy on glenohumeral joint mobility.
    Chang JH; Hsu AT; Lee SJ; Chang GL
    Clin Biomech (Bristol, Avon); 2004 Jul; 19(6):572-8. PubMed ID: 15234480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Path of glenohumeral articulation throughout the rotational range of motion in a thrower's shoulder model.
    Huffman GR; Tibone JE; McGarry MH; Phipps BM; Lee YS; Lee TQ
    Am J Sports Med; 2006 Oct; 34(10):1662-9. PubMed ID: 16685095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Dynamic stability of the glenohumeral joint. A biomechanical study].
    Wülker N; Rössig S; Korell M; Thren K
    Sportverletz Sportschaden; 1995 Mar; 9(1):1-8. PubMed ID: 7778016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immediate response of glenohumeral abduction range of motion to a caudally directed translational mobilization: a fresh cadaver simulation.
    Hsu AT; Ho L; Ho S; Hedman T
    Arch Phys Med Rehabil; 2000 Nov; 81(11):1511-6. PubMed ID: 11083357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the resting position of the glenohumeral joint: a cadaver study.
    Hsu AT; Chang JH; Chang CH
    J Orthop Sports Phys Ther; 2002 Dec; 32(12):605-12. PubMed ID: 12492269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidirectional kinematics of the glenohumeral joint during simulated simple translation tests: impact on clinical diagnoses.
    Moore SM; Musahl V; McMahon PJ; Debski RE
    J Orthop Res; 2004 Jul; 22(4):889-94. PubMed ID: 15183451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Passive stabilizers of the glenohumeral joint. A biomechanical study].
    Wülker N; Sperveslage C; Brewe F
    Unfallchirurg; 1993 Mar; 96(3):129-33. PubMed ID: 8475399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The three-dimensional motions of glenohumeral joint under semi-loaded condition during arm abduction using vertically open MRI.
    Sahara W; Sugamoto K; Murai M; Tanaka H; Yoshikawa H
    Clin Biomech (Bristol, Avon); 2007 Mar; 22(3):304-12. PubMed ID: 17196721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated type II superior labral anterior posterior lesions do not alter the path of glenohumeral articulation: a cadaveric biomechanical study.
    Youm T; Tibone JE; ElAttrache NS; McGarry MH; Lee TQ
    Am J Sports Med; 2008 Apr; 36(4):767-74. PubMed ID: 18272798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical assessment of Type II superior labral anterior-posterior (SLAP) lesions associated with anterior shoulder capsular laxity as seen in throwers: a cadaveric study.
    Mihata T; McGarry MH; Tibone JE; Fitzpatrick MJ; Kinoshita M; Lee TQ
    Am J Sports Med; 2008 Aug; 36(8):1604-10. PubMed ID: 18359822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in abduction and rotation range of motion in response to simulated dorsal and ventral translational mobilization of the glenohumeral joint.
    Hsu AT; Hedman T; Chang JH; Vo C; Ho L; Ho S; Chang GL
    Phys Ther; 2002 Jun; 82(6):544-56. PubMed ID: 12036396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of the individual muscles of the shoulder to glenohumeral joint stability during abduction.
    Yanagawa T; Goodwin CJ; Shelburne KB; Giphart JE; Torry MR; Pandy MG
    J Biomech Eng; 2008 Apr; 130(2):021024. PubMed ID: 18412511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thoracohumeral muscle activity alters glenohumeral joint biomechanics during active abduction.
    Konrad GG; Jolly JT; Labriola JE; McMahon PJ; Debski RE
    J Orthop Res; 2006 Apr; 24(4):748-56. PubMed ID: 16514650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cadaveric study of strain on the subscapularis muscle.
    Muraki T; Aoki M; Uchiyama E; Takasaki H; Murakami G; Miyamoto S
    Arch Phys Med Rehabil; 2007 Jul; 88(7):941-6. PubMed ID: 17601478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of capsular tightening on humeral head translations.
    Werner CM; Nyffeler RW; Jacob HA; Gerber C
    J Orthop Res; 2004 Jan; 22(1):194-201. PubMed ID: 14656680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the glenoid labrum and glenohumeral abduction on stability of the shoulder joint through concavity-compression : an in vitro study.
    Halder AM; Kuhl SG; Zobitz ME; Larson D; An KN
    J Bone Joint Surg Am; 2001 Jul; 83(7):1062-9. PubMed ID: 11451977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.